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Introduction  

I am deeply honored to receive the Murray Goodman Scientific Excellence & Mentoring Award, and 
to join the distinguished company of its past recipients. It was a privilege to know Professor 
Goodman, whose exceptional combination of scientific innovation and mentorship offers a model we 
can all hope to emulate. 

Our theme is orthogonality, a concept I introduced to peptide chemistry during my doctoral 
studies with Bruce Merrifield at The Rockefeller University [1, 2], and which has been a centerpiece 
of my independent career on the University of Minnesota chemistry faculty.  

Orthogonality 

In mathematics, “orthogonality” means intersecting at right angles. In law, it refers to multiple issues 
that are irrelevant to each other, a point that recently came up in arguments at the U.S. Supreme 
Court, much to the delight of Justices Roberts and Scalia [3]. In crossword puzzles [4], orthogonal 
clues can hide the theme. For example, if I asked you “Boston airport” (five letters: answer 
LOGAN), and “Ball girl?” (three letters: answer DEB), you would get an extra “aha” once you 
realized that the puzzle was about the wedding of my daughter Deb to my new son-in-law Logan that 
took place the weekend just preceding the award lecture. 

The term “orthogonal” was brought to chemistry in a 1977 J. Am. Chem. Soc. communication 
[1] where we defined an orthogonal system as a set of completely independent protecting groups in 
which different chemical mechanisms are used to remove each set. Ever since, this word has proven 
highly useful to succinctly describe a concept of chemoselectivity that chemists and biologists have 
grasped, at least intuitively, for much longer. Think Emil Fischer’s concept of an enzyme lock and a 
substrate key [5, 6], or E. J. Corey’s multi-level protecting group combinations for the total syntheses 
of complex poly-ols [7].  

To illustrate, note that for the classic Merrifield scheme, the “temporary” Nα-amino Boc 
protecting group is removed at each cycle by treatment with trifluoroacetic acid (TFA), while all of 
the “permanent” side-chain protecting groups and the anchor to the support are required to be stable. 
This makes it necessary to use a much stronger acid, namely anhydrous HF, to achieve the final 
cleavage, a direct consequence of the fact that the same chemical mechanism is used to cleave both 
classes [2, 8]. In contrast, a two-dimensional orthogonal scheme can be developed, using the 
dithiasuccinoyl (Dts) protecting group on the Nα-amino group. Dts is very acid stable, but removable 
under mild conditions by thiolysis–hence fitting our definition of orthogonality. This now allows the 
Boc (and related) groups previously used for “temporary” protection to be applied to the side-chains, 
and taken with Wang’s p-alkoxybenzyl ester support [an electron-donating oxygen substituent on the 
ring makes the ester more acid-labile; see ref. 9], the entire protection scheme is “frame-shifted” to 
allow for the relatively milder cleavage by TFA. A third dimension of orthogonality can be added by 
adopting an acid-stable, non-thiolysable but photolabile ortho-nitrobenzyl ester, as first introduced 
into solid-phase peptide synthesis by Dan Rich [10], to provide anchoring to the support–this all was 
experimentally implemented with Fernando Albericio, as described in our 1985 J. Am. Chem. Soc. 
full paper [11]. 

Many others, including James Tam [12], Carolyn Bertozzi [13], Barry Sharpless [14], and Steve 
Zimmerman [15], have developed the idea in different directions, including to describe specific 
bond-making chemistries, like ligations, “clicks,” “stapling,” chemical modifications of proteins, 
PEGylation’s, and so forth [citations to this sentence are highly selective, and many more can be 
found with minimal effort]. In collaborative work with my former student Bob Hammer and my 
brother Francis, we exploited orthogonality to create universal “zip-code” arrays for highly specific 
“DNA-on-a-chip” detection of mutations in genetic diseases and cancer [16]. 
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Dithiasuccinoyl (Dts) Chemistry 

I found the 1,2,4-dithiazolidine-3,5-dione heterocycle in the German patent literature – credit goes to 
Zumach, Weiss, and Kühle) [17] – and saw how it could be adapted for amino group protection. 
Groups that cover both free valences of nitrogen are relatively rare. Viewed as a nitrogen atom 
linked to two molecules of carbonyl sulfide (COS), the analogy to a succinoyl group, but with two 
sulfurs, led me to coin the dithiasuccinoyl (Dts) moniker. Several multi-step routes to elaborate the 
Dts heterocycle had been proposed previously, and over the years we adapted and improved the 
original methods (Scheme 1). 
 

    
 
 

 
 
 
 
 
 

 
 

In terms of removal, I reasoned that any reductive procedure that cleaved the disulfide would 
eventually result in the reducing hydrogens ending on the nitrogen. In the process, two COS 
molecules would be lost, via thiocarbamate intermediates. Later, we realized that reagents like 
trivalent phosphines, that can “pluck out” a sulfur, make it possible to consider Dts-amines as 
“masked” isocyanates. 

Early on, we established the kinetic and mechanistic details of the thiolytic removal of the Dts 
group [18, 19], which involved identification of so-called carbamoyl disulfide intermediates 
(Scheme 2). Although the two steps with rates k1 and k2 both involve disulfide cleavage and would 
nominally appear to be similar, they have rather different features and driving forces … knowledge 
we would later be able to use in productive ways. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Scheme 1. Preparation and transformations of dithiasuccinoyl (Dts)-amines 

Scheme 2. Thiolytic removal of the dithiasuccinoyl (Dts)-amino protecting group 
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If we think of Dts as a cyclic carbamoyl disulfide, a myriad of interesting applications have emerged 
for this family of compounds: 
 

 Primary amino groups that can be protected by Dts include not only the Nα-amino group of 
-amino acids [1, 20, 21], but also the building blocks for peptide nucleic acids (PNA) [22] 
and the side-chains of amino sugar building blocks for certain glycopeptides [23]. 

 Obviously, Dts cannot be used to protect the Nα-imino group of proline, but fortunately we 
were able to optimize open-chain carbamoyl disulfide protection for this residue [24]. 

 We can “invert” the fundamental mechanism of thiolytic deprotection to develop protecting 
groups for the sulfhydryl side-chain of cysteine, and for “directed” syntheses of inter- and 
intramolecular disulfides [25, 26]. 

 The fact that Dts derivatives are “masked” isocyanates [21] can be very important, given all 
the difficulties and complications of working directly with isocyanates. Moreover, Dts-
amino acids are desulfurized to N-carboxyanhydrides (NCA’s), and Dts-dipeptides give rise 
to hydantoins, all under unusually mild conditions [20, 21]. 

 Focusing on the trivalent phosphorus that can act to desulfurize Dts (and a related 
compound we call “EDITH”), this chemistry serves as an excellent entry to 
phosphorothioate DNA and RNA for “anti-sense” applications [27, 28]. 

 Lastly, Dts chemistry makes it possible to come up with a vastly milder variation to the 
classic Gabriel synthesis that converts alkyl halides to the corresponding amines – 
I particularly want to call attention to Mark Wood and collaborators for independent results 
in this direction [29]. 

 
Turning to the preparation of Dts-amines, it was obvious almost from the start that there had to be 
some way that was more straightforward than what was in the literature. I found a 1973 paper by 
Kobayashi et al. [30] that described a rather roundabout route to bis(chlorocarbonyl)disulfane, the 
reagent in the box. But look at the structure: it has all of the non-nitrogen atoms that make up Dts, 
plus two leaving groups – surely this would be a winner. But first, Alayne Schroll, Andy Mott, and 
David Halsrud in my Minnesota lab had to put in an enormous amount of meticulous work [31] to 
develop a robust and reproducible route to the desired reagent (Scheme 3). 
 
 
 

 
 
 
 
 
 

 
 

 

After successfully producing the hard-won reagent, we tried our best to react it with primary amines 
or amino acids, but none of these experiments gave even the slightest trace of the desired Dts 
heterocycle. Instead, the products were either isocyanates directly, or derivatives thereof. Therefore, 
we next investigated additional ways to access the required (chlorocarbonyl)(carbamoyl)disulfane 
intermediate – which had been postulated by Zumach, Weiss, and Kühle [17] to be an obligatory 
intermediate in the mechanism for Dts formation – but again, none of these approaches gave Dts.  

We had more or less reconciled ourselves to the fact that using bis(chlorocarbonyl)disulfane as a 
reagent for a single-step synthesis of the Dts heterocycle was not meant to be, when my son Michael 
joined my lab for a summer while he was still in high school. I remembered a discussion years earlier 
with Bob Hammer, where he suggested that some of our problems might be due to the fact that our 

Scheme 3. Preparation of bis(chlorocarbonyl)disulfane 
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“leaving group” was HCl, and that maybe they could be circumvented by changing the leaving group 
to TMS-Cl. In other words, the idea was to use trimethylsilyl (TMS) groups as “big protons” … and 
it worked, as communicated to the J. Am. Chem. Soc. in 2005 [32]. Since the seeds of this work had 
been planted while I was still in graduate school, I asked my mentor Bruce Merrifield to be a 
coauthor, and in fact, this is the last publication of Bruce’s amazing career. 

For a further example of how an initially disappointing result could bear fruit, we were long 
aware of the classic Nefkens Reagent [33] that allows a one-pot method, in aqueous basic solution, to 
create phthaloyl amino acids, but were repeatedly unsuccessful in creating its Dts analogue, let alone 
using such a reagent to create Dts-amino acids. In trouble-shooting the chemistry, we found that the 
Zumach-Weiss-Kühle-type reaction that for other substrates is essentially instantaneous under 
normal conditions, now slowed down enough to allow us to isolate, characterize, and/or trap relevant 
intermediates. As revealed at this meeting [34], we found four structures, all of which could be 
solved at the atomic level by x-ray crystallography, and all of which model stages in the classic 
Zumach-Weiss-Kühle mechanism towards Dts-amines. In particular, we believe that delving into the 
molecular geometries will explain why bis(chlorocarbonyl)disulfane fails to give Dts when reacted 
with primary amines, but successfully gives Dts when reacted with bis(TMS)-amines. 

 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

 
Our best current understanding (Scheme 4) is as follows: thiocarbamates 2 react with 
(chlorocarbonyl)sulfenyl chloride (3) to generate an initial adduct 4, which can cyclize to 5 first, and 
then lose EtCl, to give Dts (1). If however EtCl is lost first, the 
(chlorocarbonyl)(carbamoyl)disulfane intermediate 6 is surprisingly stable, but does not go to Dts. 
We also understand the formation of other by-products, such as 1,2,4-thiadiazolidine-3,5-dione (Tda) 
(10), and the outcomes under specialized conditions [like 3-ethoxy-1,2,4-dithiazolin-5-one (EDITH) 
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Scheme 4. A full picture of the Zumach-Weiss-Kühle reaction mechanism 
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(11), formed when R = H]. Thus, we are finally on the verge of a complete understanding of the 
Zumach-Weiss-Kühle reaction … and it took less than 40 years. 

Orthogonal Solid-Phase Peptide Synthesis 

All along, these investigations into fundamental organosulfur chemistry have informed significant 
developments in orthogonal solid-phase peptide synthesis. In particular: 
 

 Tracking down a low-level but nonetheless troublesome side reaction in the preparation of 
Dts-amino acid building blocks, Samuel Zalipsky was compelled to prepare any number of 
novel polyethylene glycol (PEG) derivatives [20]. A mechanistic control experiment led to 
the isolation of a PEG-amino acid, and that was used, in turn, to create the first PEG-PS 
resin [35]. Later work with Fernando Albericio, Jane Chang, Derek Hudson, and Nuria Solé 
led to more practical formulations, suitable for commercial production [36]. Once peptide 
chemists realized that their more challenging synthetic targets required support materials 
that were compatible with both organic solvents and with aqueous media, PEG-PS became 
the resin support of choice for many experiments, including combinatorial chemistry 
designs that culminate in biological testing. 

 Later, lightning hit a second time, when Maria Kempe parlayed her experience and insights 
in the field of molecular imprinting to develop the highly counter-intuitive, but very 
effective, CLEAR family of supports for SPPS [37]. 

 The signature step of solid-phase synthesis is the anchor to the support, and many of my co-
workers, including Fernando Albericio, Jordi Alsina, Yongxin Han, Knud Jensen, Nancy 
Kneib-Cordonier, Michael Songster, Josef Vágner, and Scott Yokum, made significant 
contributions to a veritable alphabet soup (or rhyme scheme) of handles (or linkers), like 
PAL, HAL, XAL, and BAL [38–41]. 

 I have already alluded to the underlying motivation for orthogonal peptide synthesis –
development of milder reaction conditions for the key steps, so that the overall scheme 
would be conducive to the preparation of the sort of labile constructs needed to solve 
important biological problems. While our initial focus was to apply Dts chemistry, it later 
turned out that many of our ideas could be implemented with Carpino’s Fmoc group instead 
[42]. In this regard, I want to call attention to the important work of Meienhofer’s group at 
Hoffmann-LaRoche [43] and the Cambridge group of Bob Sheppard and Eric Atherton [44] 
in expediting the transition from Boc to Fmoc in a sizeable portion of the peptide synthesis 
laboratories in academia and in the private sector worldwide. In my lab, many students 
contributed, especially Liz Ottinger who was the first to create phosphopeptides by Fmoc 
chemistry in the mid ‘90’s [45].  

 A central interest of ours has been the management of cysteine residues, including the 
development of new protecting groups and the regioselective creation of disulfide bridges 
both in solution and on-resin [the latter exploiting Steve Mazur’s concept, as per ref. 46, of 
pseudo-dilution. Starting with Ioana Annis and Lin Chen, and continuing in collaboration 
with Arno Spatola, Deanna Long, and Krys Darlak then all at Peptide International, we 
developed a polymer-supported Ellman’s reagent for oxidation of cysteine-containing 
peptides under extraordinarily mild conditions, in essence an artificial “chaperone.”  

 Lin Chen, Bob Hammer, and others helped to homologate our chemistry to create peptide 
trisulfides [47], a class of compounds that were speculative novelties when we started, but 
have since appeared in Nature in surprising ways. 

 A productive collaboration with Clare Woodward provided numerous insights into 
fundamental questions in protein folding research, particularly on the role of disulfide 
bridges. Using the 58-residue three-disulfide small protein bovine pancreatic trypsin 
inhibitor (BPTI) as a model, Marc Ferrer, Elisar Barbar, Chris Gross, Hong Pan, Judit 
Tulla-Puche, Irina Getun, and Natàlia Carulla synthesized and characterized the parent 
structure along with numerous analogues that were made more flexible by replacing 
cysteine moieties by pairwise -amino-n-butyric acid (Abu) residues [48–53]. Most 
dramatically, we designed, synthesized, and characterized BetaCore, the first four-stranded 
antiparallel β-sheet that folds in water [54]. The synthetic chemistry required orthogonal 
oxime ligation chemistry that we developed and optimized [55]. 
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Conclusions 

In this contribution, I have shared with you a number of scientific stories with the common 
denominator of “orthogonality.” What started as a simple word – to express and clarify an idea that 
chemists have implicitly known for much longer – has blossomed significantly in the 21st century as 
a critical design consideration when carving out new directions in chemical biology. It is particularly 
appropriate to note that in the last lecture that I heard Murray Goodman give, at a 2001 symposium 
honoring Bruce Merrifield’s 80th birthday, he spoke about ways that orthogonality had formed his 
own research.  
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