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Muddiest Point – Entropy and Reversible

I am confused about entropy and how it is different in a reversible
versus irreversible case.

Note: Some of the discussion below follows from the previous muddiest points comment on

the general idea of a reversible and an irreversible process. You may wish to have a look at

that comment before reading this one.

Let’s talk about entropy first, and then we will consider how “reversible” gets involved.

Generally we divide the universe into two parts, a system (what we are studying) and the

surrounding (everything else). In the end the total change in the entropy will be the sum of

the change in both,

dStotal = dSsystem + dSsurrounding.

This total change of entropy has only two possibilities: Either there is no spontaneous

change (equilibrium) and dStotal = 0, or there is a spontaneous change because we are not

at equilibrium, and dStotal > 0. Of course the entropy change of each piece, system or

surroundings, can be positive or negative. However, the second law says the sum must be

zero or positive. Let’s start by thinking about the entropy change in the system and then

we will add the entropy change in the surroundings.

Entropy change in the system: When you consider the change in entropy for a process

you should first consider whether or not you are looking at an isolated system. Start with

an isolated system. An isolated system is not able to exchange energy with anything else

(the surroundings) via heat or work. Think of surrounding the system with a perfect, rigid

insulating blanket. If the system is isolated, then you have two choices: (1) You are at

equilibrium and there will be no change in the entropy, ie no spontaneous processes. (2) You

are not at equilibrium and the entropy will increase as the system spontaneously heads for

equilibrium. For example, think of having one side of your system hotter than the other side,

and spontaneously the two sides equilibrate to the same temperature. Your book refers to

this as the “produced entropy” or dSprod, and you should associate this with the spontaneous

drive to equilibrium. Note that since the system is isolated, there is no exchange of energy

with the surrounding via heat, and therefore q = 0. The entropy change in the isolated

system is only the result of spontaneous change toward equilibrium.

Add the surroundings: Now allow the system to interact with the surroundings. This

means energy can be exchanged via heat and work. In this case we still have any increase

in entropy due to our system being away from equilibrium and spontaneously changing, the

“produced” entropy or dSprod. However now we also have any change in the entropy of the

system due to the exchange of energy between the system and the surroundings via heat,

which the book refers to as the entropy change from exchange dSexch. Now the total for the

system is

dSsystem = dSprod + dSexch.
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In an isolated system dSexch = 0.

Consider the isothermal expansion of an ideal gas. The gas is the system, and the rest

is the surroundings. If the gas expands, then it is doing work on the surroundings. The

conversion of energy in the gas to work would cause the temperature to drop (remember the

adiabatic expansion). However, since we declared this to be an isothermal expansion energy

must flow via heat into the gas from the surroundings to maintain the temperature. So, by

definition an isothermal expansion is not isolated. Note that the amount of energy that flows

into the gas via heat to maintain the temperature is exactly the amount needed to replace

the energy used by the gas for the work in the expansion.

Now we have both the contribution to the entropy change from the system and from the

surroundings. Realize that the change in the surroundings due to exchange of energy via

heat is exactly equal and opposite to the change in the system due to the exchange of energy

via heat, δqsystem = −δqsurrounding (it is the same heat). The entropy due to exchange is the

heat over the temperature, dSexch = δq
T

. If we put the whole picture together we have,

dStotal = dSsystem + dSsurrounding

= (dSprod + dSexch)︸ ︷︷ ︸
dSsystem

+dSsurrounding

=

(
dSprod +

δqsystem

T

)
︸ ︷︷ ︸

dSsystem

+
δqsurrounding

T︸ ︷︷ ︸
dSsurrounding

And using δqsystem = −δqsurrounding,

dStotal =

(
dSprod +

δqsystem

T

)
︸ ︷︷ ︸

dSsystem

− δqsystem

T︸ ︷︷ ︸
dSsurrounding

(1)

Note that the entropy change due to exchange of energy via heat is equal and opposite for

the system and surroundings. If the system is at equilibrium then there is no spontaneous

change and we know that the total change in the entropy should be zero (although the

change in the system and surroundings may not be zero, they will be equal in amplitude

with opposite sign). At equilibrium dSprod = 0 and the last two terms cancel to give a total

change of zero for the entropy, dStotal = 0 at equilibrium. If the system is not at equilibrium,

then we will have dSprod > 0 and dStotal > 0 indicating spontaneous change.

Reversible vs. Irreversible. Now consider how we calculate the entropy change. Start

with the entropy change for the system,

dSsystem = dSprod +
δqsystem

T
. (2)

It is not always obvious how you might calculate dSsystem, but since entropy is a state function

we can choose any path we like to calculate the change and it must be the same for all paths



3

that start and end in the same places. We choose the reversible path since it is well defined

and we know how to calculate it. For a reversible process the system is at equilibrium at

every point along the path (see previous Muddiest points comment on reversible). This

means that for a reversible path dSprod = 0 in equation 2

dSsystem =
δqsystem,rev

T
. (3)

Calculate the reversible path: Let’s use our standard model system, the isothermal expansion

of an ideal gas, as an example (figure 1).
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Figure 1: Consider a reversible isothermal expansion where you remove one grain of sand at

a time. The plot on the right is for 0.12 moles of an ideal gas at 300 K.

Since this is isothermal we know that it does interact with the surroundings and there will be

the flow of energy via heat. We can calculate the heat using the first law, dU = δq+ δw, and

the fact that we know for an ideal gas that the energy, U , only depends on the temperature.

This means that dU = 0 for our isothermal process,

dU = 0 (isothermal, ideal) −→ δq = −δw

We know how to calculate work, δw = −PdV , and we know how the pressure changes with

volume during the reversible process since it is at equilibrium at all times, P = RT
V̄

.

δqrev = −δwrev =
RT

V̄
dV̄

Using equation 3,

dSsystem =
δqsystem,rev

T
=
R

V̄
dV̄

Integrating over the process we get ∆Ssystem, and this is just integrating over the work divided

by the temperature.

∆Ssystem =

∫ V̄finish

V̄start

R

V̄
dV̄ = R ln

(
V̄finish

V̄start

)
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For the expansion this is a positive number, just as we expected. Allowing the same amount

of gas at the same temperature to exist in a larger volume increases the disorder (think

of placing the same number of items in a smaller space as being more organized). From

the molecules perspective this actually moved the translational energy levels closer together,

making more of them accessible at the given temperature. More equally probably states to

choose from means more disorder.

Note that while we used a reversible path to calculate the entropy change of the system, S is a

state function, so this is the entropy change of the system for any isothermal path, reversible

or not.

We also now know the entropy change for the surroundings. It is generally true from equation

1,

dSsurroundings =
δqsurroundings

T
= −δqsystem

T
(4)

And for the reversible process we have dSprod = 0 giving us in equation 1,

dSsurroundings = −dSsystem (reversible)

Integrating then gives us,

∆Ssurroundings = −∆Ssystem = −R ln

(
V̄finish

V̄start

)
(reversible) (5)

As we expected, for the reversible path (ie at equilibrium at all times) the change in the

entropy of the surroundings is equal amplitude and opposite sign of the change in the entropy

of the system. This is not the case for an irreversible process.

Now consider an irreversible path: Let’s use our standard irreversible isothermal expansion

where we expand at constant pressure, figure 2.

Now we start with the fact that the entropy is a state function, and therefore the entropy

change for our system must be the same as it was in the reversible case.

∆Ssystem = R ln

(
V̄finish

V̄start

)
However, this time we know that some of the entropy change in the system was from spon-

taneous change since this was not a reversible process. Therefore dSprod > 0. Looking at

equation 2, we can see that this also means that,

dSsystem − dSprod =
δqsystem

T

δqsystem

T
< dSsystem (6)

Since the change in the entropy of the system is the same as the reversible process, and

the total change in entropy (dStotal = dSsystem + dSsurrounding) is now positive since we have
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Figure 2: Consider an irreversible isothermal expansion where you lower the external pressure

all at once by knocking off half the mass. The plot on the right is for 0.12 moles of an ideal

gas at 300 K.

spontaneous change, then there must be less change in the entropy of the surroundings. This

can be seen in equations 6 and 4.

We still use equation 4 to calculate the change in the entropy of the surroundings. How-

ever, this time the constant pressure process has less work done by the gas than the reversible

process (compare the area under the process in figures 1 and 2). This means less energy is

transfered as heat to maintain a constant temperature (remember δq = −δw in this case).

Therefore the change in the entropy of the surroundings is less than the reversible case. Using

equation 4, we need the heat for the constant pressure process to calculate ∆Ssurroundings.

dSsurroundings =
δqsurroundings

T
= −δqsystem

T

We still get this from the first law, the fact that dU = 0, and the definition of the work.

This time using the work for the constant pressure process (δw = PdV̄ ).

For the system we have,

dU = δq + δw
dU=0−→ δqsystem = −δwsystem

δwsystem=−PdV̄−→ δqsystem = PdV̄

And for the surroundings,

dSsurroundings = −δqsystem

T
= −P

T
dV̄

Integrate with constant P and T on both sides,

∆Ssurroundings = −
∫ V̄finish

V̄start

dV = −P∆V̄

T
(constant P , irreversible) (7)
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Compare this result with the change in the entropy of the surroundings for the reversible

process, equation 5. Note that once again we expected energy as heat to flow from the

surroundings to the system to maintain constant temperature for an expansion. The loss

of energy as heat from the surroundings should cause a reduction in the entropy of the

surroundings, and we get a negative number as expected. Of course the total entropy change

is still positive thanks to the larger increase in the system.

Although we did not plug in any actual numbers, you can see that the reversible and

irreversible paths have different changes in the entropy of the surroundings. Remember that

they have the same change in entropy for the system. For the expansion, we know that

less work was done by the gas in the irreversible constant pressure case compared to the

reversible case (see figures 1 and 2). Less work means less heat was needed to maintain a

constant temperature, which means a smaller change in the entropy of the surroundings.

Finally note that the entropy change in the system is the same for both paths. It is the

entropy change in the surroundings that is different when comparing a reversible (think equi-

librium, no spontaneous) to an irreversible (not at equilibrium, spontaneous change toward

equilibrium) process. And, while the entropy change in the system remains the same for

the different paths, what changes is how it is divided between produced (from spontaneous

change) and exchanged (from energy transfered via heat).

Suggested Activites

• Using the actual values in the figure captions, calculate the actual change in entropy, for

the system, the surroundings, and the total for both the reversible and the irreversible

(constant P ) paths. See how they compare and if you get what you expect.

• Do the same calculations, but this time for the compression. What do you expect for

the sign of the entropy change of the system? Which way will energy flow as heat?

What should the sign of the entropy change of the surroundings be? What should the

total entropy change be for each case? Compare your results to the expansion. The

corresponding figures for the compression are shown on the next page.
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Figure 3: Consider a reversible isothermal compression where you add one grain of sand at

a time. The plot on the right is for 0.12 moles of an ideal gas at 300 K.
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Figure 4: Consider an irreversible isothermal compression where you raise the external pres-

sure all at once by putting the mass back. The plot on the right is for 0.12 moles of an ideal

gas at 300 K.


