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Euler’s Theorem and Thermodynamics 



A Little Formal Mathematics
Euler’s Theorem

A homogeneous function of degree m exhibits the 
following behavior upon scaling of its arguments: 

f λx1,λx2,!,λxn( ) = λm f x1, x2,!, xn( )

Proof proceeds by first differentiating both sides of 
eq. (1) by λ
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Euler’s theorem asserts that for homogeneous 
functions: 
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Proof of Euler’s Theorem
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Homogeneity holds for all values of λ so we may set 
λ = 1, yielding 

Q.E.D. 



Relevance to Thermodynamics

Expressed in words, we might say, “double (or triple, or 
quadruple, etc.) your system size, and you double (or etc.) 
the value of your function.” And, that’s exactly how extensive 
thermodynamic properties, that are themselves functions of 
only extensive variables, behave!

f λx1,λx2,!,λxn( ) = λ f x1, x2,!, xn( )

Now, a homogeneous function of degree m = 1 implies 

f λx1,λx2,!,λxn( ) = λm f x1, x2,!, xn( )



Relevance to Thermodynamics

Consider the particular example of Gibbs free energy at 
constant temperature and pressure for a two-component 
system, i.e.,

We may thus exploit Euler’s Theorem with m = 1 
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Free Energy is the Sum of
Chemical Potentials

G n1,n2( ) = n1
∂G
∂n1

+ n2
∂G
∂n2

We already have a definition for those derivatives, they are 
the chemical potentials (which do depend on P and T) 

G n1,n2;P,T( ) = n1µ1 P,T( )+ n2µ2 P,T( )
The notation emphasizes that we get to use Euler’s 
theorem for a fixed P and T, but the chemical potentials will 
themselves change at different values of P and T. A cleaner 
notation is: 

G n1,n2( ) = n1µ1 + n2µ2



An Alternative Derivation
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From simply the total differential we already know: 

which at constant P and T yields: 

dG n1,n2;P,T( ) = µ1dn1 +µ2dn2

Considertion of appropriate boundary conditions and definite 
integration can then also yield 

G n1,n2( ) = n1µ1 + n2µ2
but Euler’s theorem is general for all 
extensive thermodynamic functions 
without the need to argue boundary 
conditions for each one separately 



Next:  Partial Molar Quantities and the Gibbs-Duhem Equation


