STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 10.10

Review of Module 10

- The free energy of a multicomponent system is the sum of the chemical potentials of the different components.
- Partial molar quantities are defined as

$$\overline{Z}_{j} = \left(\frac{\partial Z}{\partial n_{j}}\right)_{n_{i \neq j}, P, T}$$

where for a pure substance, the value is that for one mole of that substance, while the value in a mixture will be dependent on the composition.

All extensive thermodynamic quantities have partial molar equivalents.

 The Gibbs-Duhem equation establishes a relationship between the chemical potentials of two substances in a mixture as a function of composition:

$$x_1 d\mu_1 + x_2 d\mu_2 = 0$$
 Gibbs-Duhem Equation (constant T and P)

- At equilibrium, a given component has the same chemical potential in all phases in which it is present.
- For systems having liquid and vapor phases in equilibrium, the chemical potential (1 bar standard state) can be expressed as

$$\mu_j^{vap} = \mu_j^{vap,\circ}(T) + RT \ln P_j = \mu_j^{sol}$$

 An alternative expression for the chemical potential in the mole fraction standard state is

$$\mu_j^{sol} = \mu_j^*(l) + RT \ln \frac{P_j}{P_j^*}$$

- For an ideal solution, Raoult's law holds, which states that for all components $P_j = x_j P_j^*$ where x_j is the mole fraction of component j.
- The chemical potential in an ideal solution is then

$$\mu_j^{sol} = \mu_j^*(l) + RT \ln x_j$$

 Mixing to form an ideal solution is always favorable and is driven entirely by entropy

- Differing compositions in liquid and vapor phases in equilibrium at a given temperature permit fractional distillation of ideal solutions.
- Non-ideal solutions deviate from Raoult's Law behavior (either negatively or positively).
- At high dilution, the vapor pressure of the minority component in a non-ideal solution follows Henry's Law

$$P_j \rightarrow x_j k_{H,j} \text{ as } x_j \rightarrow 0$$

where $k_{\mathrm{H},j}$ is the Henry's Law constant for component j.

 At near purity, the vapor pressure of the majority component in a non-ideal solution follows Raoult's Law (which dictates the Henry's Law behavior of the minority component).

- In non-ideal solutions, azeotropes can exist that do not permit purification by distillation of liquid solutions having the azeotropic composition.
- Sufficient positive deviation from Raoult's Law behavior can lead to phase separation to generate two liquid phases having different compositions.
- The activity a_j takes the place of the mole fraction in non-ideal solutions, and the activity coefficient γ_j relates the activity to the mole fraction according to

$$a_j = \frac{P_j}{P_j^*} \qquad \qquad \gamma_j = \frac{a_j}{x_j}$$

The chemical potential in non-ideal solutions can be expressed as

$$\mu_j^{sol} = \mu_j^*(l) + RT \ln a_j$$

$$\mu_j^{sol} = \mu_j^*(l) + RT \ln x_j + RT \ln \gamma_j$$

 In a regular solution, the excess molar free energy of mixing is entirely associated with enthalpy and is determined as

$$\frac{\overline{G}^{E}}{RT} = x_1 \ln \gamma_1 + x_2 \ln \gamma_2$$

 Regular solution theory rationalizes activity and phase behavior based on differing intermolecular interaction energies between various liquid phase components.

Next: Module 11