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Electrolytes

Peter Debye Erich Hückel 

How do ions 
distribute 

themselves in 
dilute solutions? 

Let’s assume 
that the ions are 
point charges 

and the solvent 
can be 

represented as 
a dielectric 
continuum 



Where are the Ions?
Consider a central ion, i. Near to i, the density of ions of 
opposite charge will be enriched, while the density of ions of 
like charge will be depleted (for simplicity, we’ll consider only 
a single type of anion and a single type of cation). At 
equilibrium, we should see a Boltzmann distribution, so that 
the charge density (charge per unit volume) ρ at a distance r 
from ion i will be: 

ρi r( ) = qjCje
−qjψi r( )/kBT

j=+,−
∑

charge bulk number 
density 

(concentration) 

electrostatic potential 
from ion i 



Self-assessment 

ρi r( ) = qjCje
−qjψi r( )/kBT

j=+,−
∑

First, from intuition, what do you expect the charge 
density to be very, very far from ion i? Next, use the 
equation below to prove that. 



Self-assessment Explained 

ρi r( ) = qjCje
−qjψi r( )/kBT

j=+,−
∑

=
limψ→0

qjCj
j=+,−
∑

= 0

Very far from ion i we would expect no charge density, 
i.e., no preference for positive vs. negative charge, 
because it is too far away to exert an influence. In the 
below equation, that’s equivalent to ψ = 0. 

by electroneutrality 



The Poisson Equation
The Poisson equation fundamentally relates a charge density 
in a dielectric medium to an electrostatic potential. In a 
spherically symmetric system, the Poisson equation is 

Assuming a weak potential, so that we may truncate the 
exponential in the charge density, we have 

ρi r( ) = qjCje
−qjψi r( )/kBT
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∑ qjCj
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permittivity of free space (units) 

dielectric constant of 
medium (solvent) 

∇2ψ 



The Screened Potential
Solution of the Poisson equation with that density leads to a 
general solution of the differential equation of 

ψi r( ) =
B
r
eκr + A

r
e−κr where κ 2 =

1
ε0εkBT

qj
2Cj

j=+,−
∑

number 
density 

(i.e., cj NA ) 

For the potential to go to zero at large r, 
if must be true that B = 0. For the 
potential to go to Coulomb’s Law at 
infinite dilution (κ = 0), it must be true 
that: 

A = qi
4πε0ε and thus: ψi r( ) =

qie
−κr

4πε0εr



The Inverse Debye Length
Note that κ has units of inverse distance. 
The term involving κ in the numerator of 
the potential indicates that the potential of 
ion i is increasingly “screened” with 
increasing ionic strength. 

κ 2 =
1

ε0εkBT
qj
2Cj

j=+,−
∑

ψi r( ) =
qie

−κr

4πε0εr

With a little calculus, one can show that κ–1 is the distance at 
which there is the highest probability of finding a counterion vs 
an ion of like charge around ion i. Note that for a given 
concentration of a 1:1 electrolyte (like NaCl), that distance 
would shrink by a factor of 2 for a 2:2 electrolyte (like CaSO4). 
Thus, the counterion charge cloud “shrinks” for more highly 
charged species and screens them more rapidly. 
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