STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 12.4

Determining Equilibrium Constants

EQUILIBRIUM CONSTANTS FROM G°

$$\rightarrow \Delta_r G^{\circ}(T) = -RT \ln K_P(T)$$

One can calculate the equilibrium constant from the standard Gibbs energy of reaction, which is related to the difference in chemical potentials of reactants and products,

$$\Delta_r G^{\circ}(T) = v_Y \mu_Y^{\circ}(T) + v_Z \mu_Z^{\circ}(T) - v_A \mu_A^{\circ}(T) - v_B \mu_B^{\circ}(T)$$

One can derive $\Delta_r H^o$ from tabulated enthalpies of formation $\Delta_f H^o$, and similarly we've seen tabulated values for ΔS° (cf. videos 5.10 and 7.6)

$$\Delta_f G^\circ = \Delta_f H^\circ - T\Delta_f S^\circ$$
 (or directly tabulated $\Delta_f G^\circ$ values)

For
$$v_A A(g) + v_B B(g) \rightleftharpoons v_Y Y(g) + v_Z Z(g)$$

$$\Delta_{\mathrm{f}}G^{\circ} = \Delta_{\mathrm{f}}H^{\circ} - T\Delta_{\mathrm{f}}S^{\circ} \text{ (or directly tabulated } \Delta_{\mathrm{f}}G^{\circ} \text{ values)}$$

$$\text{For } v_{\mathrm{A}}\mathrm{A}(\mathrm{g}) + v_{\mathrm{B}}\mathrm{B}(\mathrm{g}) \Longrightarrow v_{\mathrm{Y}}\mathrm{Y}(\mathrm{g}) + v_{\mathrm{Z}}\mathrm{Z}(\mathrm{g})$$

$$\Delta_{\mathrm{r}}G^{\circ}(T) = v_{\mathrm{Y}}\Delta_{\mathrm{f}}G^{\circ}[\mathrm{Y}] + v_{\mathrm{Z}}\Delta_{\mathrm{f}}G^{\circ}[\mathrm{Z}] - v_{\mathrm{A}}\Delta_{\mathrm{f}}G^{\circ}[\mathrm{A}] - v_{\mathrm{B}}\Delta_{\mathrm{f}}G^{\circ}[\mathrm{B}]$$

MEASURING G

Consider a simple reaction, $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

Reaction proceeds to extent: $1-\xi$ 2ξ $(0 \le \xi \le 1)$

The Gibbs energy of the reaction mixture,

$$G(\xi) = (1 - \xi)\overline{G}_{N_2O_4} + 2\xi\overline{G}_{NO_2}$$

$$= (1 - \xi)G_{N_2O_4}^{\circ} + 2\xi G_{NO_2}^{\circ} + (1 - \xi)RT \ln P_{N_2O_4} + 2\xi RT \ln P_{NO_2}$$

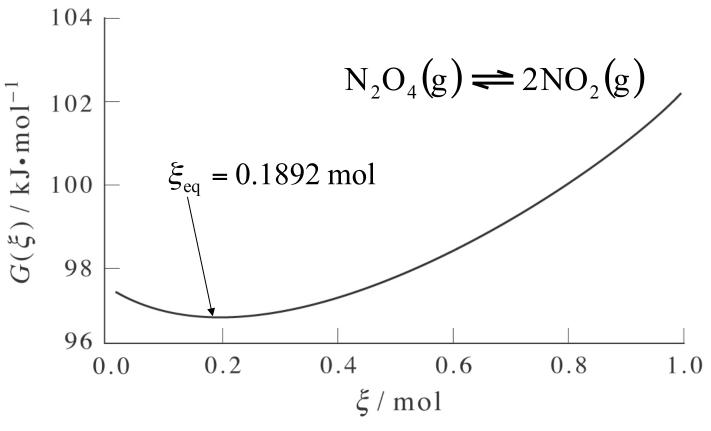
Use: $P_{\text{N}_2\text{O}_4} = \frac{1-\xi}{1+\xi}P_{\text{total}}$ $P_{\text{NO}_2} = \frac{2\xi}{1+\xi}P_{\text{total}}$ total moles = $(1-\xi)+2\xi=1+\xi$ $P_{\text{total}} = 1$ bar (externally fixed)

choose standard states so that: $G_{\rm N_2O_4}^{\circ} = \Delta_{\rm f} G_{\rm N_2O_4}^{\circ}$ $G_{\rm NO_2}^{\circ} = \Delta_{\rm f} G_{\rm NO_2}^{\circ}$

$$G(\xi) = (1 - \xi)\Delta_{f}G_{N_{2}O_{4}}^{\circ} + 2\xi\Delta_{f}G_{NO_{2}}^{\circ} + (1 - \xi)RT\ln\frac{1 - \xi}{1 + \xi} + 2\xi RT\ln\frac{2\xi}{1 + \xi}$$

G As Function of Reaction Extent

$$G(\xi) = (1 - \xi)\Delta_{f}G_{N_{2}O_{4}}^{\circ} + 2\xi\Delta_{f}G_{NO_{2}}^{\circ} + (1 - \xi)RT\ln\frac{1 - \xi}{1 + \xi} + 2\xi RT\ln\frac{2\xi}{1 + \xi}$$



298.15 K / 1 bar:

$$\Delta_{\rm f} G_{\rm N_2O_4}^{\circ} = 97.79 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta_{\rm f} G_{\rm NO2}^{\rm o} = 51.26 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$$

$$RT = 2.479 \text{ kJ} \cdot \text{mol}^{-1}$$

Self-assessment

$$G(\xi) = (1 - \xi)\Delta_{f}G_{N_{2}O_{4}}^{\circ} + 2\xi\Delta_{f}G_{NO_{2}}^{\circ} + (1 - \xi)RT\ln\frac{1 - \xi}{1 + \xi} + 2\xi RT\ln\frac{2\xi}{1 + \xi}$$

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

298.15 K / 1 bar:

$$\Delta_{\rm f}G_{\rm N_2O_4}^{\circ} = 97.79 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta_{\rm f} G_{\rm NO2}^{\circ} = 51.26 \,\mathrm{kJ \cdot mol^{-1}}$$

$$RT = 2.479 \text{ kJ} \cdot \text{mol}^{-1}$$

Given that G is minimized (stationary) at equilibrium, how else might ξ_{eq} be determined rather than graphically?

Self-assessment Explained

$$G(\xi) = (1 - \xi)\Delta_{f}G_{N_{2}O_{4}}^{\circ} + 2\xi\Delta_{f}G_{NO_{2}}^{\circ} + (1 - \xi)RT\ln\frac{1 - \xi}{1 + \xi} + 2\xi RT\ln\frac{2\xi}{1 + \xi}$$

Given that G is minimized (stationary) at equilibrium, how else might ξ_{eq} be determined rather than graphically?

Stationary implies $dG/d\xi_{eq} = 0$, so one simply takes the derivative of the left hand side, inserts the necessary constants, and solves for ξ_{eq} . The verification that one obtains 0.1892 is left to the calculusly eager.

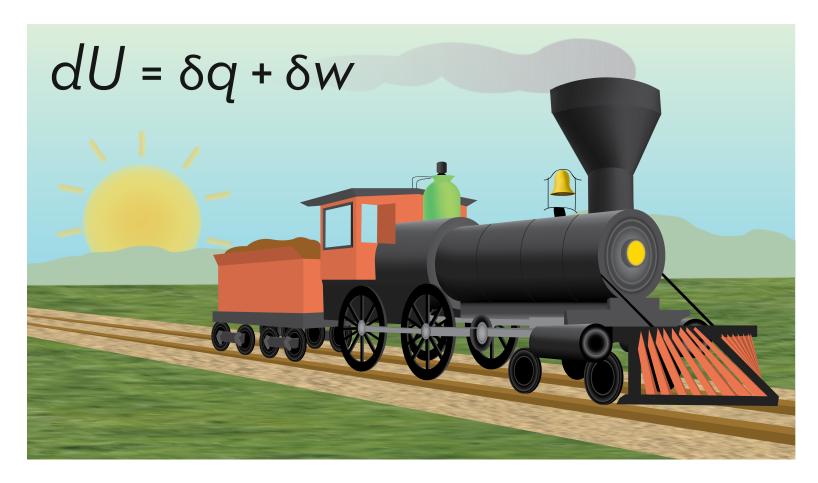
298.15 K / 1 bar:

$$\Delta_{\rm f} G_{{\rm N}_2{\rm O}_4}^{\circ} = 97.79 \; {\rm kJ \cdot mol}^{-1}$$

$$\Delta_{\rm f} G_{\rm NO2}^{\circ} = 51.26 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$$

$$RT = 2.479 \text{ kJ} \cdot \text{mol}^{-1}$$

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$



Next: Reaction Quotient Redux