STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 12.5

Reaction Quotient Redux

UTILITY OF THE REACTION QUOTIENT

video 12.2:
In general:
$$\Delta_r G = \Delta_r G^{\circ}(T) + RT \ln Q_P$$
 $Q_P = \left(\frac{P_Y^{v_Y} P_Z^{v_Z}}{P_A^{v_A} P_B^{v_B}}\right)$
At equilibrium: $\Delta_r G^{\circ}(T) = -RT \ln K_P$ $K_P = \left(\frac{P_Y^{v_Y} P_Z^{v_Z}}{P_A^{v_A} P_B^{v_B}}\right)_{eq}$
the equilibrium pressures

substitute: $\Delta_r G = -RT \ln K_P + RT \ln Q_P$

Cf.

$$\Delta_r G = RT \ln \frac{Q_P}{K_P} - reaction quotient}$$
equilibrium constant

REACTION QUOTIENT DICTATES DIRECTION

$$v_{A}A(g) + v_{B}B(g) \Longrightarrow v_{Y}Y(g) + v_{Z}Z(g)$$
$$\Delta_{r}G = RT \ln \frac{Q_{P}}{K_{P}} \qquad Q_{P} = \left(\frac{P_{Y}^{v_{Y}}P_{Z}^{v_{Z}}}{P_{A}^{v_{A}}P_{B}^{v_{B}}}\right) \qquad K_{P} = \left(\frac{P_{Y}^{v_{Y}}P_{Z}^{v_{Z}}}{P_{A}^{v_{A}}P_{B}^{v_{B}}}\right)_{eq} \checkmark$$

• At equilibrium, $\Delta_r G=0$ and $Q_P = K_P$.

- If Q_P < K_P then Q_P must *increase* to proceed toward equilibrium. This means the pressure of the products will *increase* and the pressure of the reactants will *decrease*, and the reaction will go to the *right*.
- If $Q_P > K_P$ then Q_P must *decrease* to proceed toward equilibrium. This means the pressure of the products will *decrease* and the pressure of the reactants will *increase* and the reaction will go to the *left*.

Self-assessment

Consider the reaction below, for which $K_P = 10$ at 960 K:

$$2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g)$$

Given 960 K starting partial pressures of 1.0 x 10^{-3} , 0.20, and 1.0 x 10^{-4} bar for SO₂, O₂, and SO₃, respectively, predict the direction in which the reaction will spontaneously proceed and the overall $\Delta_r G$

Self-assessment Explained $2 \operatorname{SO}_2(g) + \operatorname{O}_2(g) \Longrightarrow 2 \operatorname{SO}_3(g)$ $K_P = 10$ at 960 K

Given 960 K starting partial pressures of 1.0 x 10⁻³, 0.20, and 1.0 x 10⁻⁴ bar for SO₂, O₂, and SO₃, respectively, predict the direction in which the reaction will spontaneously proceed and the overall $\Delta_r G$

To begin,
$$Q_P = \frac{P_{SO_3}^2}{P_{O_2}P_{SO_2}^2} = \frac{(0.0001)^2}{(0.001)^2(0.2)} = 0.05$$

as $Q_P < K_P$, the reaction will proceed to the right

And,
$$\Delta_{\rm r} G = RT \ln \frac{Q_P}{K_P}$$

= (8.314 J K⁻¹ mol⁻¹)(960 K) ln $\left(\frac{0.05}{10}\right)$
= -42.3 kJ mol⁻¹

Next: Temperature Dependence of K