STATISTICAL MOLECULAR Thermodynamics

Christopher J. Cramer

Video 13.2

Potential and Electromotive Force

POTENTIAL AND ELECTROMOTIVE FORCE

V is the "potential" — a *positive* potential attracts negative electrons. So, the cathode has a more positive potential than the anode.

$$
\Delta V = V_{\text{cathode}} - V_{\text{anode}}
$$

cell voltage is always *positive (or else you've misassigned which is the anode and which is the cathode)*

€ Electromotive force (EMF), *E*, is defined as Δ*V* for an open circuit, i.e., one through which no current is flowing (*I* = 0)

But, if electrons spontaneously flow from anode to cathode, how can we apply *equilibrium* thermodynamics to electrochemical cells?

Electromotive Force and Free Energy

$$
E = \lim_{\varepsilon \to 0} \Delta V (I \to 0 \pm \varepsilon)
$$

Insertion of a potentiometer into the circuit permits control of the current. Application of a counter-potential can be used to achieve a current of zero, at which point the system is in equilibrium (no spontaneous flow of electrons).

Recall, *positive E* implies spontaneous anode-to-cathode electron flow, negative *E* implies spontaneous "cathode-to-anode" (reversed) flow, and the infinitesimal change ε implies that we are operating reversibly, so that *E* is related to free energy (e.g., *G*, if operating at constant *T* and *P*). If we write anode to left and cathode to right (by convention), then spontaneous positive *E* is equivalent to spontaneous negative *G*.

Since ΔG is equal to $-w_{\text{non-}PV}$, we need to determine the work associated with a transfer of electrons from one potential to another. That is *nFE*, where *n* is the # of moles of electrons, *F* is the Faraday constant $(96,485 \text{ C mol}^{-1})$, and *E* is the EMF (note: 1 C $\text{V} = 1 \text{ J}$).

$$
\Delta G = -nFE
$$

THE NERNST EQUATION

 $-nFE = \Delta G = \Delta G^{\circ}(T, P) + RT \ln \frac{a_Y^{\circ}}{w}$ *y a*Z *z* $a_W^w a_X^x$ *x* Consider the generic cell reaction $wW + xX \leftrightarrows yY + zZ$ i
I $ln F = nFE^o = ΔG^o(T, P)$ then $E = E^{\rm O} - \frac{RT}{E}$ *nF* $\ln \frac{a_Y^y}{\sqrt{2}}$ *y a*Z *z* a^w _{*w*} a^x _X *E*^o is –Δ*G*/*nF* when all reaction participants are at unit activity

The Nernst equation

€ *definition) and gases at 1 bar are sufficiently close to ideal to typically But, how do we create a mixture with all reactants and products at unit activity? Not trivial. At least all pure phases have unit activity at 1 bar (by have unit activity. But, what about solutes?*

Standard EMF

Example: $AgCl(s)$ + 1 $\frac{1}{2}H_2(g)$ \Rightarrow $H^+_{(aq)} + Cl^-_{(aq)} + Ag_{(s)}$

$$
E = E^{O} - \frac{RT}{1 \cdot F} \ln \frac{a_{Ag}a_{H^{+}}a_{Cl^{-}}}{a_{AgCl}\sqrt{a_{H_{2}}}} = E^{O} - \frac{RT}{F} \ln a_{H^{+}}a_{Cl^{-}}
$$

= $E^{O} - \frac{RT}{F} \ln a_{\pm}^{2} = E^{O} - \frac{RT}{F} \ln m^{2} \gamma_{\pm}^{2} = E^{O} - \frac{2RT}{F} (\ln m + \ln \gamma_{\pm})$

F

F

Debye-Hückel theory!

F

$$
\ln \gamma_{\pm} = -|q_+ q_-| \frac{\kappa}{8\pi\varepsilon_0\varepsilon_1 k_\text{B}T} \propto \sqrt{m}
$$

Thus, a plot of $E + (2RT/F) \ln(m)$ vs. $m^{1/2}$ will have an intercept of E^o . Without a theory to relate electrolyte activity coefficients to concentrations, we'd be in trouble…

Next: Standard Potentials