STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 13.3

Standard Potentials

SINGLE ELECTRODE VALUES OF E°

For a given *full* electrochemical cell reaction:

$$\Delta_{\rm r}G^{\rm o} = \Delta_{\rm oxid}G^{\rm o} + \Delta_{\rm red}G^{\rm o} \Longrightarrow - nFE^{\rm o}$$

e.g., $Zn^{2+}(aq) + 2e^{-} \leftrightarrows Zn(s)$ $Cu(s) \leftrightarrows Cu^{2+}(aq) + 2e^{-}$ $Zn^{2+}(aq) + Cu(s) \leftrightarrows Cu^{2+}(aq) + Zn(s)$ $\Delta_{rG}^{o} = -2FE_{red}^{o}$ $\Delta_{r}G^{o} = -2FE^{o}$

But we can't measure the standard free energies of the half-cell reactions because electrons don't come in bottles for use as reagents! However, if by convention, we set any one half-cell potential, we can determine all of the others from summed full-cell potentials. So, by convention, we assign a relative E° value of 0.00 to the Standard Hydrogen Electrode (SHE).

$$E_{\text{red}}^{0} \left[\mathrm{H}^{+} \left(\mathrm{aq.}; a_{\pm} = 1 \right) \middle| \mathrm{H}_{2} \left(\mathrm{gas}; 1 \mathrm{bar} \right) \right] = 0$$

concentration standard state (molar)

STANDARD REDUCTION POTENTIALS
$$E_{\text{red}}^{\text{o}} \left[H^{+} \left(\text{aq.; } a_{\pm} = 1 \right) \middle| H_{2} \left(\text{gas; 1 bar} \right) \right] = 0$$

Then, if we have:

$$AgCl_{(s)} + \frac{1}{2}H_{2(g)} \leftrightarrows H_{(aq)}^{+} + Cl_{(aq)}^{-} + Ag_{(s)} \qquad E^{o} = 0.222 V$$

$$AgCl_{(s)} + e^{-} \leftrightarrows Cl_{(aq)} + Ag_{(s)} \qquad \boxed{E_{red}^{o} = 0.222 V}$$

$$\frac{1}{2}H_{2(g)} \leftrightarrows H_{(aq)}^{+} + e^{-} \qquad -E_{red}^{o} = 0.000 V$$

$$by convention$$

measured

With one electrode set, all other values can be determined. By convention, standard *reduction* potentials are tabulated, and these may be positive (favorable relative to oxidation of H_2) or negative (unfavorable relative to oxidation of H_2).

Self-assessment

The standard-state free energy required to "split" water into hydrogen (a very clean fuel, since burning it creates only water) and oxygen is indicated below

$$2H_2O_{(l)} \Leftrightarrow 2H_{2(g)} + O_{2(g)} \qquad \Delta G_r^o = 474.3 \text{ kJ mol}^{-1}$$

What is the standard reduction potential for the below half-cell reaction?

$$O_{2(g)} + 4H_{(aq)}^+ + 4e^- \leftrightarrows 2H_2O_{(l)}$$

since n = 4 electrons, the standard reduction potential x = 1.23 V

TABULATED REDUCTION POTENTIALS

Half-Reaction	[%] (V)	Half-Reaction	ଞ° (V)
$F_2 + 2e^- \rightarrow 2F^-$	2.87	$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$	0.40
$Ag^{2+} + e^- \rightarrow Ag^+$	1.99	$Cu^{2+} + 2e^- \rightarrow Cu$	0.34
$Co^{3-} + e^- \rightarrow Co^{2-}$	1.82	$Hg_2Cl_2 + 2e^- \rightarrow 2Hg + 2Cl^-$	0.27
$H_2O_2 + 2H^- + 2e^- \rightarrow 2H_2O$	1.78	$AgCl + e^- \rightarrow Ag + Cl^-$	0.22
$Ce^{4+} + e^- \rightarrow Ce^{3+}$	1.70	$SO_4^{2-} + 4H^+ + 2e^- \rightarrow H_2SO_3 + H_2O$	0.20
$PbO_2 + 4H^+ + SO_4^{2-} + 2e^- \rightarrow PbSO_4 + 2H_2O$	1.69	$Cu^{2+} + e^- \rightarrow Cu^+$	0.16
$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$	1.68	$2H^+ + 2e^- \rightarrow H_2$	0.00
$2e^- + 2H^+ + IO_4^- \rightarrow IO_3^- + H_2O$	1.60	$Fe^{3+} + 3e^- \rightarrow Fe$	-0.036
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	1.51	$Pb^{2+} + 2e^- \rightarrow Pb$	-0.13
$Au^{3+} + 3e^- \rightarrow Au$	1.50	$\mathrm{Sn}^{2+} + 2\mathrm{e}^- \rightarrow \mathrm{Sn}$	-0.14
$PbO_2 + 4H^+ + 2e^- \rightarrow Pb^{2+} + 2H_2O$	1.46	$Ni^{2+} + 2e^- \rightarrow Ni$	-0.23
$Cl_2 + 2e^- \rightarrow 2Cl^-$	1.36	$PbSO_4 + 2e^- \rightarrow Pb + SO_4^{2-}$	-0.35
$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	1.33	$Cd^{2+} + 2e^- \rightarrow Cd$	-0.40
$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$	1.23	$Fe^{2+} + 2e^- \rightarrow Fe$	-0.44
$MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1.21	$Cr^{3+} + e^- \rightarrow Cr^{2+}$	-0.50
$IO_3^- + 6H^+ + 5e^- \rightarrow \frac{1}{2}I_2 + 3H_2O$	1.20	$Cr^{3+} + 3e^- \rightarrow Cr$	-0.73
$Br_2 + 2e^- \rightarrow 2Br^-$	1.09	$Zn^{2+} + 2e^- \rightarrow Zn$	-0.76
$VO_2^+ + 2H^+ + e^- \rightarrow VO^{2+} + H_2O$	1.00	$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$	-0.83
$AuCl_4^- + 3e^- \rightarrow Au + 4Cl^-$	0.99	$Mn^{2+} + 2e^- \rightarrow Mn$	-1.18
$NO_3^- + 4H^+ + 3e^- \rightarrow NO + 2H_2O$	0.96	$Al^{3+} + 3e^- \rightarrow Al$	-1.66
$ClO_2 + e^- \rightarrow ClO_2^-$	0.954	$H_2 + 2e^- \rightarrow 2H^-$	-2.23
$2Hg^{2+} + 2e^- \rightarrow Hg_2^{2+}$	0.91	$Mg^{2+} + 2e^- \rightarrow Mg$	-2.37
$Ag^+ + e^- \rightarrow Ag$	0.80	$La^{3+} + 3e^- \rightarrow La$	-2.37
$Hg_2^{2+} + 2e^- \rightarrow 2Hg$	0.80	$Na^+ + e^- \rightarrow Na$	-2.71
Fe^{3+} + $\mathrm{e}^- \rightarrow \mathrm{Fe}^{2+}$	0.77	$Ca^{2+} + 2e^- \rightarrow Ca$	-2.76
$O_2 + 2H^+ + 2e^- \rightarrow H_2O_2$	0.68	$Ba^{2+} + 2e^- \rightarrow Ba$	-2.90
$MnO_4^- + e^- \rightarrow MnO_4^{2-}$	0.56	$K^+ + e^- \rightarrow K$	-2.92
$I_2 + 2e^- \rightarrow 2I^-$	0.54	$Li^+ + e^- \rightarrow Li$	-3.05
$Cu^+ + e^- \rightarrow Cu$	0.52		

Next: Activities and Other Thermodynamic Properties