STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 1.1

That Thermite Reaction

IF YOU WANT TO BUILD A HOUSE ...

...first you've got to build a hammer

THERMITE REACTION

Which way does this reaction go? Why?

Will the metal that is produced melt? How do you know?

The energetics of reactions are important for all chemical processes! For example: H₂SO₄, polyethylene, pharmaceuticals, soaps, food products, petroleum cracking, biochemical processes, etc.

THERMITE REACTION — EXOTHERMIC $Fe_2O_3(s) + 2AI(s) \rightarrow AI_2O_3(s) + 2Fe(s)$ assess change in *enthalpy* for a given direction $\Delta H_{rxn} \approx -850 \text{ kJ/mol} = -850,000 \text{ J/mol}$ *Released* heat can *raise temperature* and *melt solids* ∆H_{fus}(Fe) ≈ 14 kJ/mol $\Delta H_{fus}(AI) \approx 11 \text{ kJ/mol}$ C_p (Al₂O₃) ≈ 128 J/mol•°C C_p (Fe) \approx 25 J/mol•°C

Adiabatic temperature rise? T > 2,500 °C! MP (Fe) = 1530 °C

HEAT SUITABLE FOR WELDING

$Fe_2O_3(s) + 2AI(s) \rightarrow AI_2O_3(s) + 2Fe(s)$

Enthalpy, heat capacity, entropy, free energy....that's THERMODYNAMICS!