STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

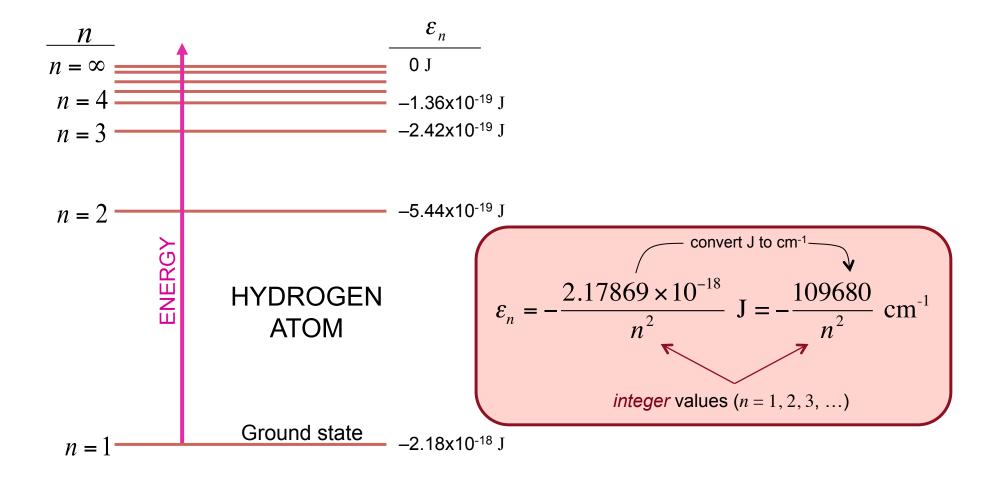
Video 1.5

Atomic Energy Levels

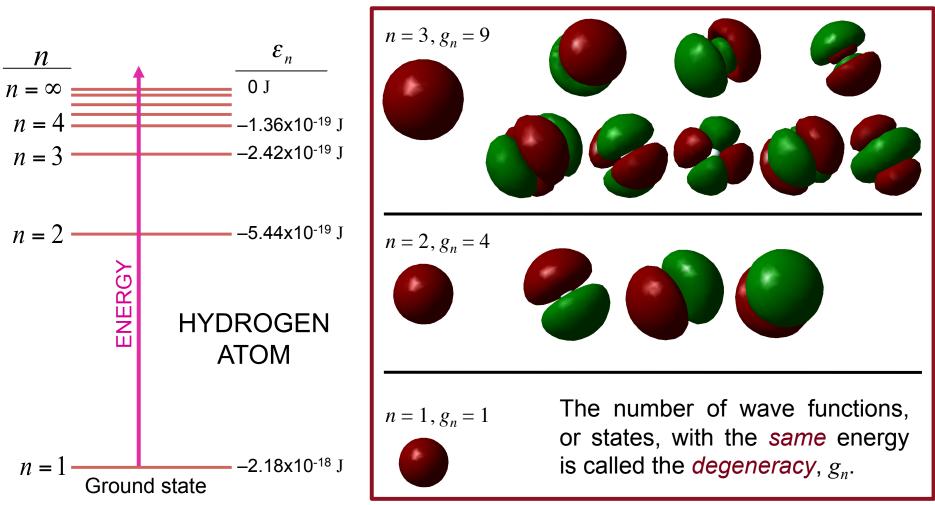
HOW IS ENERGY STORED IN AN ATOM?

Connecting *macroscopic* thermodynamics to a molecular understanding requires that we understand how energy is distributed on a *microscopic* scale.

ATOMS


<u>Electrons</u>: Electronic energy. Changes in the kinetic and potential energy of one or more electrons associated with the nucleus.

<u>Nuclear motion:</u> Translational energy. The atom can move (translate) in space — kinetic energy only.


ELECTRONIC ENERGY LEVELS THE HYDROGEN ATOM

ELECTRONIC ENERGY LEVELS THE HYDROGEN ATOM

WAVE FUNCTIONS AND DEGENERACY THE HYDROGEN ATOM

Wave functions are atomic orbitals

ELECTRONIC ENERGY LEVELS MANY-ELECTRON ATOMS

There is no simple formula for the electronic energy levels of atoms having more than one electron. Instead, we can refer to tabulated data:

TABLE 1.2

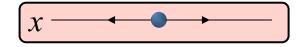
Data from "Moore's tables", listing the degeneracies and energies (in cm^{-1}) of the first few states of atomic sodium.

Electron configuration	Degeneracy	Energy/cm ⁻¹
3s	2	0.00
3 <i>p</i>	2	16 956.183
3 <i>p</i>	4	16 978.379
4s	2	25 739.86
3 <i>d</i>	6	29 172.855
3 <i>d</i>	4	29 172.904
4p	3	30 266.88
4p	4	30 272.51
5 <i>s</i>	2	33 200.696
4d	6	34 548.754
4d	4	34 548.789

^{*a*}From C.E. Moore, *Atomic Energy Levels*, Natl. Bur. Std. Circ. No. 467 (US Government Printing Office, Washington, DC, 1949).

For electronic energy levels, there is usually a very large gap from the ground state to the first excited state. As a result, we will see that, at "reasonable" temperatures, we will seldom need to consider any states above the ground state when computing "partition functions".

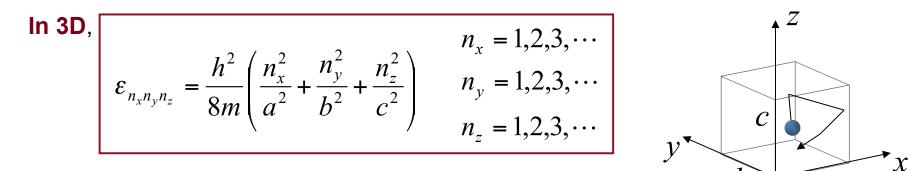
Copyright 2003 USB


TRANSLATIONAL ENERGY LEVELS

In addition to electronic energy, atoms have translational energy.

To find the allowed translational energies we solve the Schrödinger equation for a particle of mass *m* in a box of variable side lengths.

In 1D, motion is along the *x* dimension and the particle is constrained to the interval $0 \le x \le a$


$$\varepsilon_n = \frac{n^2 h^2}{8ma^2} \quad n = 1, 2, 3, \cdots$$

The allowed states are *non-degenerate*, i.e., $g_n = 1$ for all values of *n*.

h

a

States *can be degenerate*. E.g., if a = c then the two *different states* $(n_x = 1, n_y = 1, n_z = 2)$ and $(n_x = 2, n_y = 1, n_z = 1)$ have the *same energy*.