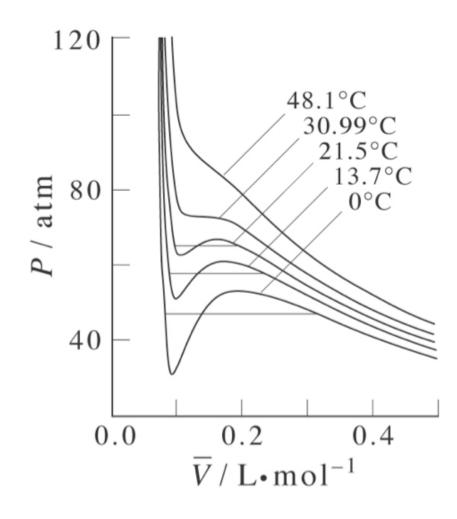

STATISTICAL MOLECULAR THERMODYNAMICS

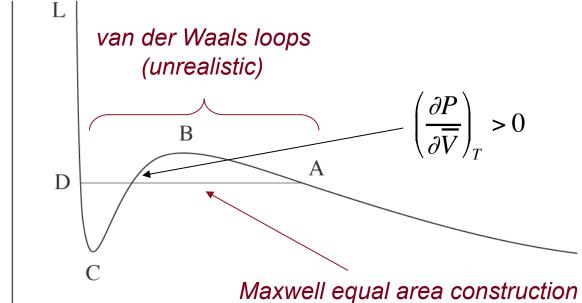

Christopher J. Cramer

Video 2.3

Gas-Liquid PV Diagrams

NON-IDEAL CUBIC EQUATIONS OF STATE

van der Waals EOS


$$\left(P + \frac{a}{\overline{V}^2}\right)\left(\overline{V} - b\right) = RT$$

$$\overline{V}^{3} - \left(b + \frac{RT}{P}\right)\overline{V}^{2} + \frac{a}{P}\overline{V} - \frac{ab}{P} = 0$$

Redlich-Kwong and Peng-Robinson are also cubic and show similar behavior

VDW CUBIC EQUATION OF STATE

$$\overline{V}^{3} - \left(b + \frac{RT}{P}\right)\overline{V}^{2} + \frac{a}{P}\overline{V} - \frac{ab}{P} = 0$$

As a cubic equation, there are 3 real roots for temperatures below T_c , which come closer and closer together and ultimately merge to a single, triply degenerate root at $T = T_c$, $P = P_c$, and $V = V_c$.

At that point:

G

$$\left(\overline{V}-\overline{V}_c\right)^3=0$$

 $\overline{V}^{3} - 3\overline{V}_{c}\overline{V}^{2} + 3\overline{V}_{c}^{2}\overline{V} - \overline{V}_{c}^{3} = 0 \checkmark$

V

P

SOLUTION FOR THE CRITICAL ISOTHERM

General:
$$\overline{V}^3 - \left(b + \frac{RT}{P}\right)\overline{V}^2 + \frac{a}{P}\overline{V} - \frac{ab}{P} = 0$$

Valid for $T = T_c$: $\overline{V}^3 - 3\overline{V}_c\overline{V}^2 + 3\overline{V}_c^2\overline{V} - \overline{V}_c^3 = 0$

Implies:
$$3\overline{V_c} = b + \frac{RT_c}{P_c}$$
 $3\overline{V_c}^2 = \frac{a}{P_c}$ $\overline{V_c}^3 = \frac{ab}{P_c}$

which yields:
$$\overline{V}_c = 3b$$
 $P_c = \frac{a}{27b^2}$ $T_c = \frac{8a}{27bR}$

...and that's how van der Waals equation of state parameters are determined! From best fitting to the critical point observables for individual gases.

CRITICAL COMPRESSIBILITY

TABLE 2.5

The experimental critical constants of various substances.

Species	$T_{\rm c}/{ m K}$	$P_{\rm c}$ /bar	P _c /atm	$\overline{V}_{\rm c}/{\rm L}\cdot{\rm mol}^{-1}$	$P_{\rm c}\overline{V}_{\rm c}/RT_{\rm c}$
Helium	5.1950	2.2750	2.2452	0.05780	0.30443
Neon	44.415	26.555	26.208	0.04170	0.29986
Argon	150.95	49.288	48.643	0.07530	0.29571
Krypton	210.55	56.618	55.878	0.09220	0.29819
Hydrogen	32.938	12.838	12.670	0.06500	0.30470
Carbon dioxide	304.14	73.843	72.877	0.09400	0.27443

$$\frac{P_c \overline{V}_c}{RT_c} = \frac{1}{R} \left(\frac{a}{27b^2}\right) (3b) \left(\frac{27bR}{8a}\right) = 0.375!$$

there is an apparent correspondence between different "real" gases that is entirely independent of the van der Waals equation of state