STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 2.6

Molecular Interactions

MOLECULAR INTERACTION

The virial expansion derives from *exact relationships* between virial coefficients and intermolecular interactions

If 2 molecules interaction according to a potential energy function that depends only on their separation r, then B_{2V} can be expressed as:

$$B_{2V}(T) = -2\pi N_A \int_0^\infty \left[e^{-u(r)/k_B T} - 1 \right] r^2 dr$$

LIMITING INTERACTIONS

In principle, u(r) can be calculated from quantum mechanics, but this can be a challenging computational undertaking

THE LENNARD-JONES POTENTIAL

SOME LENNARD-JONES PARAMETERS

Gas	$(\epsilon / k_{\rm B}), {\rm K}$	σ, pm
He	10.22	256
Ne	35.6	275
Ar	120	341
Kr	164	383
Xe	229	406
H_2	37.0	293
$\overline{\mathrm{N}_2}$	95.1	370
$\overline{O_2}$	118	358

ϵ has units of energy, σ has units of length

A CLOSER LOOK AT
$$B_{2V}$$

 $B_{2V}(T) = -2\pi N_A \int_0^\infty \left[e^{-u(r)/k_B T} - 1 \right] r^2 dr$ $u(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right]$

$$B_{2V}(T) = -2\pi N_A \int_0^\infty \left[\exp\left\{ -\frac{4\varepsilon}{k_B T} \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right] \right\} - 1 \right] r^2 dr$$

$$T^* = k_B T / \varepsilon \text{ and } x = r / \sigma$$
$$B_{2V}(T^*) = -2\pi\sigma^3 N_A \int_0^\infty \left[\exp\left\{ -\frac{4}{T^*} \left[x^{-12} - x^{-6} \right] \right\} - 1 \right] x^2 dx$$

A CLOSER LOOK AT
$$B_{2V}$$

 $T^* = k_B T/\varepsilon$ and $x = \frac{r}{\sigma}$
 $B_{2V}(T^*) = -2\pi\sigma^3 N_A \int_0^\infty \left[\exp\left\{ -\frac{4}{T^*} \left[x^{-12} - x^{-6} \right] \right\} - 1 \right] x^2 dx$

$$B_{2V}^{*}(T^{*}) = \frac{B_{2V}(T^{*})}{2\pi} \pi \sigma^{3} N_{A} \leftarrow \text{a characteristic volume-mol-1}$$

$$B_{2V}^{*}(T^{*}) = -3\int_{0}^{\infty} \left[\exp\left\{ -\frac{4}{T^{*}} \left[x^{-12} - x^{-6} \right] \right\} - 1 \right] x^{2} dx$$

ANOTHER LAW OF CORRESPONDING STATES

If one measures $B_{2\nu}(T^*)$, divides by $2/3\pi N_A\sigma^3$

and plots this vs $T^* = k_B T / \varepsilon$ then...

At $T^* \sim 3.2$, which defines the "Boyle temperature", $B^*_{2V}(T^*)=0$, which means every gas behaves as though ideal at its characteristic Boyle temperature!