STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 2.7

Other Intermolecular Potentials

MOLECULAR INTERACTION

The virial expansion derives from *exact relationships* between virial coefficients and intermolecular interactions

If 2 molecules interaction according to a potential energy function that depends only on their separation r, then B_{2V} can be expressed as:

$$B_{2V}(T) = -2\pi N_A \int_0^\infty \left[e^{-u(r)/k_B T} - 1 \right] r^2 dr$$

UNDERSTANDING ATTRACTION

We can understand the r^{-6} attraction term in the L-J potential

dipole-induced dipole interactions

All terms have same r^{-6} behavior, but for nonpolar molecules only the *dispersion interactions* are relevant

dispersion interactions induced dipole-induced dipole interactions

QUANTUM MECHANICAL DISPERSION

This is a quantum mechanical effect associated with the correlated motion of the electrons in the atoms, which leads to a reduction in energy.

OTHER INTERMOLECULAR POTENTIALS

Simpler u(r) models lead to analytical solutions for the integral that defines $B_{2V}(T)$

THE HARD SPHERE MODEL

Good for very high *T* relative to $\varepsilon/k_{\rm B}$

$$u(r < \sigma) = \infty$$
$$u(r > \sigma) = 0$$

$$B_{2V}(T) = -2\pi N_A \int_0^\infty \left[e^{-u(r)} / k_B T - 1 \right] r^2 dr$$

$$= -2\pi N_A \int_0^\infty [0 - 1] r^2 dr - 2\pi N_A \int_\sigma^\infty [e^0 - 1] r^2 dr$$

$$= \frac{2\pi \sigma^3 N_A}{3} \qquad \text{This is 4 times the volume of } N_A$$

spheres (σ in this case can be thought of as the sphere diameter)

Independent of T, but $B_{2V}(T)$ vs T plot is reasonably flat at high T

THE SQUARE WELL MODEL

 $u(r < \sigma) = \infty$ $u(\sigma < r < \lambda\sigma) = -\varepsilon$ $u(r > \lambda\sigma) = 0$ same as hard sphere $B_{2V}(T) = \frac{2\pi\sigma^3 N_A}{3} \left[1 - \left(\lambda^3 - 1\right) \left(e^{\frac{\varepsilon}{k_B T}} - 1 \right) \right]$ 100 $B_{2V}(T) / \mathrm{cm}^3 \cdot \mathrm{mol}^{-1}$ 0 sqwm L-J -100370 σ (pm) 328 Good fit to experimental -200data for N_2 ε/k_B (K) 95.2 95.1 -300λ 1.58 200 600 0 400 800 T/K