STATISTICAL MOLECULAR Thermodynamics

Christopher J. Cramer

Video 4.4

Ideal Diatomic Gas: Part 1

Energy of an Ideal Diatomic Gas

In addition to translational and electronic degrees of freedom, a diatomic also can rotate and vibrate. These motions can be treated within the *rigid rotator* and *harmonic oscillator* approximations, respectively (*exactly solvable QM problems*)

The Energy:

DIATOMIC IDEAL GAS COMPONENTS OF Q

 $Q(N, V, T) = \frac{q(V, T)^{N}}{N!}$ Start from the general expression: $Q(N, V, T)$ =

Now with the diatomic molecular partition function:

$$
q(V,T) = q_{\text{trans}} q_{\text{rot}} q_{\text{vib}} q_{\text{elec}} \longrightarrow Q(N,V,T) = \frac{\left(q_{\text{trans}} q_{\text{rot}} q_{\text{vib}} q_{\text{elec}}\right)^{N}}{N!}
$$

Consider each degree of freedom:

The translational partition function: $q_{\rm trans}$ is the same as in the monatomic case but the mass is now equal to m_1+m_2 **m/n** m_1

$$
q_{\text{trans}}(V,T) = \left(\frac{2\pi (m_1 + m_2)k_{\text{B}}T}{h^2}\right)^{3/2}V
$$

DIATOMIC IDEAL GAS COMPONENTS OF Q

DIATOMIC IDEAL GAS q_{vib}

Within the harmonic oscillator approximation:

Quantum number, *n* (enn)

1

 $\left(n+\frac{1}{2}\right)$

2

(

Vibrational frequency, ^ν (nu)

 $\varepsilon_{\text{vib}} = h\nu \left| n + \right.$

 $\sqrt{ }$

 \setminus

) *n* = 0,1,2,… *all levels are non-degenerate* $(g_n=1$ for all *n*)

$$
q_{\rm vib}(T) = \sum_{n} e^{-\beta \varepsilon_{\rm vib}} = \sum_{n=0}^{\infty} e^{-\beta \left(n + \frac{1}{2}\right)h\nu} = \sum_{n=0}^{\infty} e^{-\beta h\nu n} e^{-\beta h\nu/2} = e^{-\beta h\nu/2} \sum_{n=0}^{\infty} e^{-\beta h\nu n}
$$

We use *x x n* $\sum_{n=0} x^n = \frac{1}{1-x}$ $\frac{8}{1}$ $\frac{2}{10}$ 1 1 $\bar{0}$ with $x = e^{-\beta h v} < 1$

$$
\frac{q_{\text{vib}}(T)}{1-e^{-\beta h\nu/2}} = e^{-\beta h\nu/2} \sum_{n=0}^{\infty} \left(e^{-\beta h\nu}\right)^n = \frac{e^{-\beta h\nu/2}}{1-e^{-\beta h\nu}}
$$

THE VIBRATIONAL TEMPERATURE Θ_{vib}

DIATOMIC IDEAL GAS VIBRATIONAL $\langle E \rangle$ and C_V

From the partition function, we can calculate the vibrational contribution to the average energy,

$$
\langle E_{\text{vib}} \rangle = N k_{\text{B}} T^2 \frac{\partial \ln q_{\text{vib}}}{\partial T} = N k_{\text{B}} T^2 \frac{\partial}{\partial T} \ln \left(\frac{e^{-\Theta_{\text{vib}}/2T}}{1 - e^{-\Theta_{\text{vib}}/T}} \right)
$$

$$
\left\langle E_{\text{vib}} \right\rangle = N k_{\text{B}} \left(\frac{\Theta_{\text{vib}}}{2} + \frac{\Theta_{\text{vib}}}{e^{\Theta_{\text{vib}}/T} - 1} \right)
$$

and to the molar heat capacity,

$$
\overline{C}_{\text{V,vib}} = \frac{\partial \langle \overline{E}_{\text{vib}} \rangle}{\partial T} = R \left(\frac{\Theta_{\text{vib}}}{T} \right)^2 \frac{e^{-\Theta_{\text{vib}}/T}}{\left(1 - e^{-\Theta_{\text{vib}}/T}\right)^2}
$$

DIATOMIC VIBRATIONAL HEAT CAPACITY

$$
\frac{\overline{C}_{V, \text{vib}}}{R} = \left(\frac{\Theta_{\text{vib}}}{T}\right)^2 \frac{e^{-\Theta_{\text{vib}}/T}}{\left(1 - e^{-\Theta_{\text{vib}}/T}\right)^2}
$$

Classical limit, $C_{V, \text{vib}} = R$ (a good approximation for $T >> \Theta_{\text{vib}}$) !! $\mathbf 1$ $C_{V, \text{vib}}$ / R $C_{\rm V, vib}$ / R 0.8 $0.8\,$ 0.6 0.6 Θ_{vib} $v=50$ cm⁻¹ 0.4 0.4 *T*= $v=200$ cm⁻¹ $v=750$ cm⁻¹ 0.2 0.2 $0₀$ 0^{\prime} $\overline{2}$ 3 200 400 600 T / Θ_{vib} *T* / K