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Energy of an Ideal Diatomic Gas	
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In addition to translational and electronic degrees of freedom, 
a diatomic also can rotate and vibrate. These motions can be 

treated within the rigid rotator and harmonic oscillator 
approximations, respectively (exactly solvable QM problems) 
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Diatomic Rotations 

Within the rigid-rotator approximation, 

( ) K
h ,2,1,01
2

2

=+= JJJ
IJε

degeneracy of the Jth level, 
12 += JgJ

  

€ 

qrot (T) = gJ e
−βε rot

levels, J
∑ = 2J +1( )e−βh

2J J +1( ) / 2I

J= 0

∞

∑

Define a rotational temperature: 
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Evaluation of qrot 

Close spacing of energy levels occurs for Θrot<<T 
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As was true for the translational partition function, if the 
energy levels are sufficiently closely spaced, we can 
replace the sum by an integral  

No closed form solution for this series 



Some Rotational Temperatures	
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Valid for Θrot<<T 
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Gas Θrot, K 

H2 
CO 
N2 
NO 
O2 
HCl 
HBr 
HI 
Cl2 
Br2 

85.3 
2.8 
2.9 
2.4 
2.1 

15.0 
12.0 
9.2 
0.4 
0.1 

Easily satisfied for all but the 
lightest of gases at the lowest 

of temperatures 



A Very Friendly Integral 

€ 

qrot T( ) = dJ 2J +1( )
0

∞

∫ e−Θrot J J +1( ) /T

Making substitutions  
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Diatomic Ideal Gas Rotational <E> and CV	
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Rotational energy: 
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= RMolar heat capacity: 

A diatomic has 2 degrees of 
rotational freedom, each 
contributes R/2 to CV. 



Rotational State Occupations 
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Fraction of molecules  

 in rotational level J 
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Increases with 
increasing J 

(linearly) 

Decreases with 
increasing J 

(exponentially) 

Many accessible levels 
into which to flow energy 


