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Ideal Polyatomic Gases: Part 2 



Energy of an Ideal Polyatomic Gas	



€ 

εpolyatomic = ε trans + ε rot + εvib + εelec
The Energy: 

(sum) 

In addition to translational and electronic degrees of freedom, 
a polyatomic also can rotate and has multiple vibrations.  

As for monatomic and diatomic gases, translational energy 
comes from the particle in a box approximation and depends 
only on the mass of the particle and a chosen volume 

As for a diatomic gas, we assume a ground electronic state 
but instead of a single De we sum over the dissociation 
energies of all of the bonds 

Rotation depends on up to 3 distinct moments of inertia 



Polyatomic Vibrations 
We divide intramolecular motions into normal modes and 

express each as an independent harmonic oscillator 

€ 

Evib = NkB
Θvib, j

2
+

Θvib, j

eΘvib, j /T −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j=1

α

∑

  

€ 

εvib = hν j n j +
1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

j=1

α

∑ n j = 0,1,2,K

Recall α = 3N–5 (linear molecule) or α = 3N–6 (nonlinear molecule) 

Energy from a sum 
over modes j, 
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Vibrational Heat Capacity: CO2 
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asymmetric stretch 

symmetric stretch 

Vertical bend Horizontal bend 

degenerate, Θvib= 954 K 

Θvib= 1890 K 

Θvib= 3360 K 



Full Polyatomic Ideal Gas Q 
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Does This All Work? Water Example 

3N-6=3 
vibrational modes 

Θvib,1 = 2290 K 
Θvib,2 = 5160 K 
Θvib,3 = 5360 K 
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The points are experimental data 
and the line is computed from the 
partition function! 

Answers practical question: 
how much energy do I need 
to make my steam hotter? 


