STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 5.7

Enthalpy

CONSTANT PRESSURE CONDITIONS

For a *reversible* process where the work is restricted to pressure-volume work:

$$\Delta U = q + w = q - \int_{V_1}^{V_2} P dV$$

• At constant volume $V_1 = V_2$: $\Delta U = q_V$

 ΔU is the heat at *constant volume* (can be measured using bomb calorimetry)

constant volume

 However, in chemistry it is often more convenient to work at constant pressure, for which the heat is,

$$q_{P} = \Delta U + P_{\text{ext}} \int_{V_{1}}^{V_{2}} dV = \Delta U + P\Delta V \quad \text{So } q_{P} \text{ is not} \\ \text{equal to } \Delta U.$$

constant pressure (not a function of V)

ENTHALPY: A STATE FUNCTION

At constant volume, $q_V = \Delta U$; q_V is a state function

At *constant pressure*, $q_P = \Delta U + P \Delta V$ is also a state function

Define the enthalpy:
$$H = U + PV$$
 (general)
 $dH = dU + PdV + VdP$ (general)

At constant pressure: $\Delta H = \Delta U + P \Delta V$

confirming that the more general enthalpy *is* equal to the heat at *constant pressure*, $\Delta H = q_P$

H has the same role at constant *P* that *U* has at constant *V*

ENTHALPY VS INTERNAL ENERGY

Ice (H₂O) melting at 273 K and one atm, $q_P = 6.01$ kJ·mol⁻¹, so $\Delta \overline{H} = q_P = 6.01$ kJ • mol⁻¹

273 K molar volumes are solid: $\overline{V}_s = 0.0196 \text{ L} \cdot \text{mol}^{-1}$ rare liquid: $\overline{V}_l = 0.0180 \text{ L} \cdot \text{mol}^{-1}$ important!

What is $\Delta \overline{U}$? $\Delta \overline{U} = \Delta \overline{H} - P\Delta \overline{V}$ (at constant pressure) $\Delta \overline{U} = (6.01 \text{ kJ} \cdot \text{mol}^{-1}) - (1 \text{ atm}) (0.0180 \text{ L} \cdot \text{mol}^{-1} - 0.0196 \text{ L} \cdot \text{mol}^{-1})$ $\Delta \overline{U} = (6.01 \text{ kJ} \cdot \text{mol}^{-1}) + (1.60 \times 10^{-3} \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1}) \left(\frac{0.008314 \text{ kJ}}{0.08206 \text{ L} \cdot \text{atm}}\right) \approx 6.01 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta \overline{U} \approx 6.01 \text{ kJ} \cdot \text{mol}^{-1}$

Because ΔV is *very* small, $P\Delta V$ is also very small, and so there is neglibgible difference between ΔH and ΔU

ENTHALPY VS INTERNAL ENERGY

Water (H₂O) boiling at 373 K and one atm, $q_P = 40.7$ kJ·mol⁻¹, so $\Delta \overline{H} = q_P = 40.7$ kJ • mol⁻¹

373 K molar volumes are gas: $\overline{V}_g = 30.6 \text{ L} \cdot \text{mol}^{-1}$ liquid: $\overline{V}_l = 0.0180 \text{ L} \cdot \text{mol}^{-1}$

What is $\Delta \overline{U}$? $\Delta \overline{U} = \Delta \overline{H} - P\Delta \overline{V}$ (at constant pressure) $\Delta \overline{U} = (40.7 \text{ kJ} \cdot \text{mol}^{-1}) - (1 \text{ atm}) (30.6 \text{ L} \cdot \text{mol}^{-1} - 0.0180 \text{ L} \cdot \text{mol}^{-1})$ $\Delta \overline{U} = (40.7 \text{ kJ} \cdot \text{mol}^{-1}) - (30.58 \text{ L} \cdot \text{atm} \cdot \text{mol}^{-1}) \left(\frac{0.008314 \text{ kJ}}{0.08206 \text{ L} \cdot \text{atm}}\right) = 37.6 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta \overline{U} = 37.6 \text{ kJ} \cdot \text{mol}^{-1}$

The ΔU term relates to the energy to overcome *intermolecular forces* in the liquid, the ΔH term is *larger* as it includes the $P\Delta V$ expansion work on going from liquid to vapor