STATISTICAL MOLECULAR Thermodynamics

Christopher J. Cramer

Video 5.8

Heat Capacities

Heat Capacity is a Path Function

The *amount of energy required to raise the temperature of a substance by one degree* is different if done at constant *V* or constant *P*:

• At constant *V*, the energy added as heat is q_V , $(\Delta U = q_V)$

$$
C_V = \left(\frac{\partial U}{\partial T}\right)_V \approx \frac{\Delta U}{\Delta T} = \frac{q_V}{\Delta T}
$$

• At constant *P*, the energy added as heat is q_p , $(\Delta H = q_p)$

$$
C_P = \left(\frac{\partial H}{\partial T}\right)_P \approx \frac{\Delta H}{\Delta T} = \frac{q_P}{\Delta T}
$$

Heat Capacities of Ideal Gas

For an ideal gas:

$$
H = U + PV
$$

$$
= U + nRT
$$

Differentiating:

$$
\frac{dH}{dT} = \frac{dU}{dT} + nR
$$

For an ideal gas, *U* and *H* depend only on *T*, not *P* or *V*

So:

Or:

∂*H* ∂*T* $\sqrt{2}$ \setminus $\left(\frac{\partial H}{\partial T}\right)$ ' \vert *P* = ∂*U* ∂*T* $\sqrt{2}$ \setminus $\left(\frac{\partial U}{\partial T}\right)$ ' $\overline{}$ *V* + *nR* $C_p = C_V + nR$

 $\frac{1}{2}$ *Recall that for a monatomic ideal gas,* $C_V = (3/2)R$ *, so the*

difference between \overline{C}_p and \overline{C}_V is 67% of \overline{C}_V

DETERMINING ENTHALPY

The difference in enthalpy at two different temperatures is determined from integration of C_p over the temperature range:

$$
C_P = \left(\frac{\partial H}{\partial T}\right)_P \to dH = C_P dT \to H(T_2) - H(T_1) = \int_{T_1}^{T_2} C_P(T) dT
$$

This is true *only if* there is no phase transition occurring between T_1 and $T₂$. At a phase transition, there is no change in the temperature as you add heat $(C_P \rightarrow \infty)$, so one must also add any enthalpy associated with a phase change where needed:

Example:
$$
H(T) - H(0) = \int_{0}^{T_{\text{fus}}} C_P^s(T') dT' + \Delta_{\text{fus}} H + \int_{T_{\text{fus}}}^{T} C_P^1(T') dT'
$$

\nSolid, from $T=0$ to $T=T_{\text{fus}}$ $\Delta_{\text{fus}} H = H^1(T_{\text{fus}}) - H^s(T_{\text{fus}})$ $T=T_{\text{fus}}$ to $T=T$

ENTHALPY OF BENZENE

Benzene: T_{fus} =278.7 K, T_{vap} =353.2 K

Measuring the heat capacity, temperature by temperature *Integrating the heat capacity, adding phase changes*

500

For
$$
T > T_{\text{vap}}
$$
,
\n
$$
H(T) - H(0) = \int_0^{T_{\text{fus}}} C_P^S(T') dT' + \Delta_{\text{fus}} H + \int_{T_{\text{fus}}}^{T_{\text{vap}}} C_P^1(T') dT' + \Delta_{\text{vap}} H + \int_{T_{\text{vap}}}^{T} C_P^S(T') dT'
$$