STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 6.1

Entropy

SPONTANEITY — WHY?

Consider throwing a chunk of potassium in the Mississippi river.

Consider bubbling hydrogen through a solution of KOH. What happens?

Why does it go the direction it does? Is it exothermicity?

$\Delta H = 0$ but Spontaneous

Insulated system (so $\delta q = 0$)

$$P_{\rm ext}$$
 is zero (so $\delta w = 0$)

$$\Delta U = \delta q + \delta w = 0$$

For an ideal gas, if $\Delta U = 0$ then $\Delta T = 0$

 $\Delta H = \Delta U + \Delta (PV) = \Delta U + \Delta (nRT) = \Delta U + nR\Delta T = 0$

but it only ever goes one way...

$\Delta H = 0$ but Spontaneous

Insulated system (so $\delta q = 0$)

 ΔV is zero (so $\delta w = 0$)

$$\Delta U = \delta q + \delta w = 0$$

For ideal gases, if $\Delta U = 0$ then $\Delta T = 0$

 $\Delta H = \Delta U + \Delta (PV) = \Delta U + \Delta (nRT) = \Delta U + nR\Delta T = 0$

but it only ever goes one way...

DISORDER AS A DRIVING FORCE?

Examples of spontaneous processes that are either thermoneutral ($\Delta H = 0$) or endothermic ($\Delta H > 0$) have in common *an increase in the disorder or randomness of the system*, e.g., the mixing of Br₂ and N₂ across vessels.

Hypothesis: Systems spontaneously evolve to increase their disorder

There is an interplay between changing the energy of the system and increasing its disorder that determines the direction of a spontaneous process. To explore this further, consider the heat transfer associated with a small *reversible* change in the temperature and volume of an *ideal gas*:

$$\delta q_{rev} = dU - \delta w_{rev} = C_v(T)dT + \frac{nRT}{V}dV \overset{\checkmark}{=}$$

commingling of variables renders differential inexact

A NEW STATE FUNCTION: ENTROPY

If we divide both sides of δq_{rev} equation by T to eliminate T from last term:

$$\frac{\delta q_{rev}}{T} = \frac{C_v(T)}{T} dT + \frac{nR}{V} dV$$

The quantity on the left-hand side of the equation is now an *exact differential*

$$\frac{C_v(T)}{T}dT + \frac{nR}{V}dV = d\left[\int \frac{C_v(T)}{T}dT + nR\int \frac{1}{V}dV + \text{ constant}\right]$$

Thus, $\delta q_{rev}/T$ is a state function and it is called *entropy* (*S*).

$$dS = \frac{\delta q_{rev}}{T}$$
 Greek: "internal transformation"