USING STATE FUNCTION CHARACTER

This is *not* a reversible process! But, because entropy is a *state function*, Δ*S* does *not* depend on the path.

Thus, we can use:
$$
\Delta S = \int_{1}^{2} \frac{\delta q_{rev}}{T}
$$
 $\delta q_{rev} = dU - \delta w_{rev}$
\n $dU = 0$, $\delta q_{rev} = -\delta w_{rev}$ $\Delta S = \int_{1}^{2} \frac{\delta q_{rev}}{T} = -\int_{1}^{2} \frac{\delta w_{rev}}{T}$
\nisothermal
\n $\delta w_{rev} = -\frac{nRT}{V}dV$
\n $= nR \ln \frac{V_2}{V_1} > 0$

Irreversible vs Reversible

The difference is the change in entropy of *the surroundings*

Reversible case:

 $\Delta U = 0$ *isothermal*

The gas *absorbs heat from the surroundings*, so *the entropy of the surroundings decreases*.

$$
q_{rev} = -w_{rev} = nRT \ln \frac{V_2}{V_1} \qquad \Delta S_{surr} = -\frac{q_{rev}}{T} = -nR \ln \frac{V_2}{V_1}
$$

$$
\Delta S_{total} = S_{sys} + S_{surr} = 0
$$

No change in *total* entropy, as expected for a reversible process

Irreversible vs Reversible

The difference is the change in entropy of *the surroundings*

Irreversible case (stopcock opened all at once)**:**

No heat is transferred from the surroundings, so *the entropy of the surroundings is unchanged*. $\Delta U = 0$ *isothermal*

$$
P_{ext} = 0, \text{so } w_{irr} = 0, \text{so } q_{irr} = 0 \qquad \Delta S_{surr} = 0
$$

$$
\Delta S_{total} = S_{sys} + S_{surr} = nR \ln \frac{V_2}{V_1} + 0 = nR \ln \frac{V_2}{V_1}
$$

Total entropy *increases*, as expected for an irreversible process

Technical note: we used the irreversible *heat to compute the change in entropy of the surroundings. This is valid because there is zero work, so heat becomes a state function*

Entropy of Mixing

where $V_{i,0}$ is the original volume occupied by gas *j*

But for ideal gases at the same *T*, *V* is proportional to *n*

$$
\Delta S_i = -n_i R \ln \frac{n_i}{\sum_j n_j} \quad \Delta S_{\text{mix}} = -R \sum_i n_i \ln y_i \text{ where,}
$$

always greater than zero, so mixing is spontaneous

$$
y_i = \frac{n_i}{\sum_j n_j}
$$

mole fraction

METAL BAR TEMPERATURE EQUILIBRATION

Heat transfer between two identical pieces of the same material

T c

Since no work (negligible Δ*V*):

$$
\delta q_{\text{rev}} = dU = dq = C_V dT
$$

 $\frac{1}{2}$ If C_V is independent of T : $\Delta q = C_V \Big(T_f - T_i \Big)$

 $T_{\scriptscriptstyle h}$

Heat lost equal/opposite to heat gained: $C_V (T_f - T_h) = -C_V (T_f - T_c)$ $\Rightarrow T_f = (T_c + T_h)/2$

$$
\Delta S = \int_{T_i}^{T_f} \frac{dq}{T} = C_V \int_{T_i}^{T_f} \frac{dT}{T} = C_V \ln \left(\frac{T_f}{T_i} \right)
$$

METAL BAR TEMPERATURE EQUILIBRATION

Heat transfer between two identical pieces of the same material

T

 $T_{\rm h}$

$$
T_c \t T_h
$$
\n
$$
\Delta S = \int_{T_i}^{T_f} \frac{dq}{T} = C_V \int_{T_i}^{T_f} \frac{dT}{T} = C_V \ln \left(\frac{T_f}{T_i} \right)
$$
\nThe cold rod:
\n
$$
\Delta S = C_V \ln \left(\frac{T_c + T_h}{2T_c} \right)
$$
\nTotal: Spontaneous?
\n
$$
\Delta S = C_V \ln \left(\frac{(T_c - T_h)^2}{2T_h} \right)
$$
\n
$$
T_c^2 - 2T_c T_h + T_h^2 > 0
$$
\n
$$
\Delta S = C_V \ln \left(\frac{(T_c + T_h)^2}{4T_c T_h} \right)
$$
\n
$$
T_c^2 + 2T_c T_h + T_h^2 > 4T_c T_h
$$
\n
$$
(T_c + T_h)^2 > 4T_c T_h \t U
$$