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Entropy and Other Thermodynamic Functions



MANIPULATING DIFFERENTIALS
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Now, consider the total differential of U with respectto 7and V
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We can equate these two expressions for dU and solve for dS



SOLUTION FOR dS
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THE DIFFERENTIAL OF ENTHALPY
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Now, consider the total differential of H# with respect to 7"and P
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We can equate these two expressions for dH and solve for dS



SOLUTION FOR dS
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Considering the total differential of S with respect to 7and P
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ABSOLUTE ENTROPY VALUES

aS C (T) integrate with respect to T at constant P to
S — P determine entropy change with temperature
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Thus, we can calculate the entropy of a substance at any
temperature T, if we know the entropy at 0 K and the
constant pressure heat capacity



