STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 7.5

Third Law Entropies

units of J•K⁻¹•mol⁻¹

Solids

Carbon (diamond)	2.4	The stiffer lattice of diamond compared to graphite leads
Carbon (graphite)	5.7	to lower entropy
Sodium	51.3	Insulators have substantially lower entropies than
Potassium	64.7	conductors as the latter have many states accessible to
Silver	42.6	conduction electrons

units of J•K⁻¹•mol⁻¹

Liquids vs Gases

	Liquid	Gas
Water	70.0	188.8
Bromine	152.2	245.5

The condensed nature of the liquid reduces entropy compared to the gas; the greater mass of Br_2 compared to H_2O leads to greater entropy but in the gas phase this is somewhat balanced by an additional rotational degree of freedom for the non-linear water molecules.

units of $J \cdot K^{-1} \cdot mol^{-1}$

Gases

Variation within a series primarily dictated by mass, but relationships between series differentiated by rotational entropy.

units of $J \cdot K^{-1} \cdot mol^{-1}$

expt

Polyatomic gases

calc

near quantitative agreement between measured values and those computed from the partition function for an ideal gas

an ideal gas 213.7 213.8 CO_2 linear vs non-linear 240.2 NO_2 240.1 186.3 CH_4 186.3 200.8 200.9 C_2H_2 Increasing mass and rotational moments of inertia 219.6 219.6 C_2H_4 229.6 C_2H_6 229.5

units of $J \cdot K^{-1} \cdot mol^{-1}$

Polyatomic gases

Less entropy when the bonds are constrained in a strained ring.

RESIDUAL ENTROPY

at 81.6 K (boiling point): $\overline{S}_{calc} = 160.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $\overline{S}_{exp} = 155.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

CO has a very small dipole moment so the molecules *do not* have a tendency to align in the most energetically favorable way in the ~ 0 K solid. Instead, each CO molecule settles into its own orientation (dipole up or dipole down) and the state of lowest entropy (i.e., W = 1) is not reached (the energy required to "spontaneously" flip a molecule is not available at ~ 0 K so the dipoles are "trapped")

$$\overline{W} = 2^{N_A} (\approx \Omega)$$

$$\overline{S} = k_B \ln \overline{W} = k_B \ln 2^{N_A} = R \ln 2$$

$$\overline{S}(0) = R \ln 2 = 5.7 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

$$5.7 + 155.6 = 161.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$