STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 7.6

Additivity of Entropies

ENTROPY IS ADDITIVE FOR REACTIONS

Just as was true for enthalpy, one may define the entropy of rection to be

 $aA + bB \rightarrow yY + zZ$

 $\Delta_r S^\circ = y S^\circ [Y] + z S^\circ [Z] - a S^\circ [A] - b S^\circ [B]$

HYDROGEN COMBUSTION EXAMPLE

$$aA + bB \rightarrow yY + zZ$$

$$\Delta_r S^\circ = y S^\circ [Y] + z S^\circ [Z] - a S^\circ [A] - b S^\circ [B]$$

$$H_{2}(g) + \frac{1}{2}O_{2}(g) \rightarrow H_{2}O(1)$$

$$A_{r}S^{\circ} = 70.0 - 130.7 - \frac{1}{2} \cdot 205.2 = -163.3 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$$

very negative because the reaction converts 1.5 moles of "very disordered" gas into 1 mole of "less disordered" liquid

WATER SHIFT REACTION EXAMPLE

$$aA + bB \rightarrow yY + zZ$$

 $\Delta_r S^\circ = yS^\circ[Y] + zS^\circ[Z] - aS^\circ[A] - bS^\circ[B]$

$$C(s) + H_2O(g) \rightarrow H_2(g) + CO(g)$$

 $\Delta_r S^{\circ} = 130.7 + 197.7 - 5.7 - 188.8 = 133.9 \text{ J} \bullet \text{K}^{-1} \bullet \text{mol}^{-1}$

very positive because the reaction converts 1 mole of "very ordered" solid into 1 mole of "very disordered" gas