STATISTICAL MOLECULAR Thermodynamics

Christopher J. Cramer

Video 8.3

Maxwell Relations from *A*

Interrelated Thermodynamic Quantities

When you are not able to directly measure a given thermodynamic property, it is very useful to express it in terms of other properties.

$$
dA = dU - TdS - SdT \qquad \text{(general)}
$$

for a reversible process
$$
dU = TdS - PdV
$$

$$
dA = -PdV - SdT
$$

compare with the formal derivative of $A = A(V,T)$:

$$
dA = \left(\frac{\partial A}{\partial V}\right)_T dV + \left(\frac{\partial A}{\partial T}\right)_V dT
$$

Thus
$$
\left(\frac{\partial A}{\partial V}\right)_T = -P
$$
 and $\left(\frac{\partial A}{\partial T}\right)_V = -S$

Equating Key Cross Derivatives

$$
\left(\frac{\partial A}{\partial V}\right)_T = -P
$$
 and $\left(\frac{\partial A}{\partial T}\right)_V = -S$

 ∂ ∂*T* ∂*A* ∂V $\sqrt{2}$ \setminus $\left(\frac{\partial A}{\partial V}\right)$

∂*A*

 $\left(\frac{\partial A}{\partial T}\right)$

 $\sqrt{2}$

 \setminus

∂*T*

' \vert

V

= −*S*

' \vert =

As
$$
\frac{\partial}{\partial T} \left(\frac{\partial A}{\partial V} \right) = \frac{\partial}{\partial V} \left(\frac{\partial A}{\partial T} \right)
$$
 equality of mixed partial derivatives

$$
\left(\frac{\partial A}{\partial V}\right)_T = -P \quad \longrightarrow \quad \frac{\partial}{\partial T} \left(\frac{\partial A}{\partial V}\right) = -\left(\frac{\partial P}{\partial T}\right)_V
$$

 ∂

 ∂V

 ∂

∂*A*

 $\left(\frac{\partial A}{\partial T}\right)$

 $\sqrt{2}$

 \setminus

∂*T*

'

 $=\frac{\partial S}{\partial V}$

 $\sqrt{2}$

 \setminus

 ∂V

' \vert

T

∂*P*

 $\left(\frac{\partial P}{\partial T}\right)$

 $\sqrt{2}$

 \setminus

∂*T*

' $\overline{}$

V

 $\left(\frac{\partial S}{\partial V}\right)$

 ∂V

$$
\begin{pmatrix}\n\text{mixed} \\
\text{atives} \\
\vdots \\
\end{pmatrix}_{V}
$$

James Clerk Maxwell

=

 $\sqrt{2}$

 \setminus

∂*S*

 $\left(\frac{\partial S}{\partial V}\right)$

∂*V*

' \vert

T

One of *many* Maxwell relations

Utility of a Maxwell Relation

From *this* Maxwell relation we can determine how *S* changes with *V* given an equation of state

Integrate at constant
$$
T
$$
:

$$
\Delta S = \int_{V_1}^{V_2} \left(\frac{\partial P}{\partial T}\right)_V dV
$$

Note that T is held constant during integration over V

Get V (or ρ) dependence of S from $P-V-T$ data.

€ Example: Ideal gas

$$
\left(\frac{\partial P}{\partial T}\right)_V = \frac{nR}{V} \qquad \Delta S = nR \int_{V_1}^{V_2} \frac{dV}{V} = nR \ln \frac{V_2}{V_1} \quad \text{(isothermal)}
$$

(a previous result derived another way, cf. Video 6.2)

Entropy of Ethane

If V_1 is chosen to be so large that a gas behaves ideally $(=V_{id})$,

$$
\Delta S = S(T, V_2) - S_{(\rho \to 0)}^{\text{id}} = \int_{V^{\text{id}}}^{V_2} \left(\frac{\partial P}{\partial T} \right)_V dV \text{ (constant } T)
$$

For real gases, i.e., those having no readily available, analytical equation of state, this requires data for how pressure varies with temperature over a full range of volumes (or densities, since density is equal to \overline{V}^{-1})

Internal Energy of Ethane

Differentiating $A = U - TS$ wrt V : $T \left(\left. \partial V \right. \right)_{T} \left. \left[\left. \left(\partial V \right. \right)_{T} \right]$ $T\left(\frac{\partial S}{\partial \mathbf{r}}\right)$ *V U V* $\left(\frac{A}{V}\right) = \left(\frac{\partial U}{\partial V}\right) - T\left(\frac{\partial S}{\partial V}\right)$ " $\left(\frac{\partial S}{\partial V}\right)$ \setminus $\sqrt{}$ $\left(\frac{\partial U}{\partial V}\right)_T - T\left(\frac{\partial}{\partial V}\right)_T$ \setminus $\sqrt{2}$ $\left(\frac{\partial A}{\partial V}\right)_T = \left(\frac{\partial A}{\partial V}\right)_T$ \setminus $\sqrt{}$ ∂ ∂ (isothermal) using $V = \left(\frac{\partial V}{\partial V}\right)^T$ *S T* $\left(\frac{P}{T}\right) = \left(\frac{\partial S}{\partial V}\right)$ " $\left(\frac{\partial S}{\partial V}\right)$ \setminus $\sqrt{\frac{1}{2}}$ $\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial P}{\partial T}\right)_V$ \setminus $\sqrt{\frac{1}{2}}$ ∂ ∂ *Maxwell relation* and $\left|\frac{Q}{Q}I\right| = -P$ *V A* \int_T = - $\left(\frac{\partial A}{\partial V}\right)$ \setminus ' ∂ ∂ *previously derived* $\begin{bmatrix} \partial V \end{bmatrix}_T$ $\begin{bmatrix} \partial T \end{bmatrix}_V$ $P + T\left(\frac{\partial P}{\partial T}\right)$ *V* $\left(\frac{U}{V}\right) = -P + T\left(\frac{\partial P}{\partial T}\right)$ \int $\left(\frac{\partial P}{\partial T}\right)$ \setminus $\sqrt{}$ ∂ $= -P + T\left(\frac{\partial}{\partial x}\right)$ \int $\left(\frac{\partial U}{\partial V}\right)$ \setminus $\sqrt{}$ ∂ ∂

For real gases, i.e., those having no readily available, analytical equation of state, this again requires data for how pressure varies with temperature over a full range of volumes (although the plot here is over pressures, which are obviously readily measured for each volume)

Volume Dependence of ^A

$$
\left(\frac{\partial A}{\partial V}\right)_T = -P \qquad \longrightarrow \qquad \Delta A = -\int_{V_1}^{V_2} P dV \qquad \text{(constant } T\text{)}
$$

Ideal gas example, $P = nRT/V$:

$$
\Delta A = -nRT \int_{V_1}^{V_2} \frac{1}{V} dV = -nRT \ln \frac{V_2}{V_1} \quad \text{(constant } T\text{)}
$$

Compare this to a previous result for an ideal gas at constant *T*: $\ln \frac{r}{\sigma}$ *V* $\Delta S = nR \ln \frac{V}{I}$

1

As expected, $\Delta A = \Delta U - T \Delta S$ is equal simply to $-T \Delta S$ since Δ*U* = 0 at constant *T for an ideal gas*