STATISTICAL MOLECULAR THERMODYNAMICS

Christopher J. Cramer

Video 8.3

Maxwell Relations from A

INTERRELATED THERMODYNAMIC QUANTITIES

When you are not able to directly measure a given thermodynamic property, it is very useful to express it in terms of other properties.

$$dA = dU - TdS - SdT$$
 (general)

for a reversible process dU = TdS - PdV

$$dA = -PdV - SdT$$

$$\downarrow$$
compare with the formal derivative of $A = A(V,T)$:
$$dA = \left(\frac{\partial A}{\partial V}\right)_T dV + \left(\frac{\partial A}{\partial T}\right)_V dT$$

d

Thus
$$\left(\frac{\partial A}{\partial V}\right)_T = -P$$
 and $\left(\frac{\partial A}{\partial T}\right)_V = -S$

EQUATING KEY CROSS DERIVATIVES

$$\left(\frac{\partial A}{\partial V}\right)_T = -P \text{ and } \left(\frac{\partial A}{\partial T}\right)_V = -S$$

As $\frac{\partial}{\partial T} \left(\frac{\partial A}{\partial V} \right) = \frac{\partial}{\partial V} \left(\frac{\partial A}{\partial T} \right)$

$$\left(\frac{\partial A}{\partial V}\right)_T = -P \longrightarrow \frac{\partial}{\partial T} \left(\frac{\partial A}{\partial V}\right) = -\left(\frac{\partial P}{\partial T}\right)_V$$

 $\left(\frac{\partial A}{\partial T}\right)_{V} = -S \longrightarrow \frac{\partial}{\partial V} \left(\frac{\partial A}{\partial T}\right) = -\left(\frac{\partial S}{\partial V}\right)_{T}$

James Clerk Maxwell

 $\bigoplus \left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T}$

One of *many* Maxwell relations

UTILITY OF A MAXWELL RELATION

 $\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$ From *this* Maxwell relation we can determine how *S* changes with *V* given an equation of state

Integrate at constant *T*:
$$\Delta S = \int_{V_1}^{V_2} \left(\frac{\partial P}{\partial T}\right)_V dV$$

Note that T is held constant during integration over V

Get V (or ρ) dependence of S from P-V-T data.

Example: Ideal gas

$$\left(\frac{\partial P}{\partial T}\right)_{V} = \frac{nR}{V} \qquad \Delta S = nR \int_{V_1}^{V_2} \frac{dV}{V} = nR \ln \frac{V_2}{V_1}$$
 (isothermal)

(a previous result derived another way, cf. Video 6.2)

ENTROPY OF ETHANE

If V_1 is chosen to be so large that a gas behaves ideally (= V_{id}),

$$\Delta S = S(T, V_2) - S_{(\rho \to 0)}^{\text{id}} = \int_{V^{\text{id}}}^{V_2} \left(\frac{\partial P}{\partial T}\right)_V dV \quad (\text{constant } T)$$

For real gases, i.e., those having no readily available, analytical equation of state, this requires data for how pressure varies with temperature over a full range of volumes (or densities, since density is equal to \overline{V}^{-1})

INTERNAL ENERGY OF ETHANE

Differentiating A = U - TS wrt $V: \left(\frac{\partial A}{\partial V}\right)_T = \left(\frac{\partial U}{\partial V}\right)_T - T\left(\frac{\partial S}{\partial V}\right)_T$ (isothermal) using $\left(\frac{\partial P}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$ and $\left(\frac{\partial A}{\partial V}\right)_T = -P$ Maxwell relation $\left(\frac{\partial A}{\partial V}\right)_T = -P$ previously derived $\left(\frac{\partial U}{\partial V}\right)_T = -P + T\left(\frac{\partial P}{\partial T}\right)_V$

For real gases, i.e., those having no readily available, analytical equation of state, this again requires data for how pressure varies with temperature over a full range of volumes (although the plot here is over pressures, which are obviously readily measured for each volume)

VOLUME DEPENDENCE OF A

$$\left(\frac{\partial A}{\partial V}\right)_T = -P \longrightarrow \Delta A = -\int_{V_1}^{V_2} P dV \quad \text{(constant } T\text{)}$$

Ideal gas example, P = nRT/V:

$$\Delta A = -nRT \int_{V_1}^{V_2} \frac{1}{V} dV = -nRT \ln \frac{V_2}{V_1} \quad \text{(constant } T\text{)}$$

Compare this to a previous result for an ideal gas at constant *T*: $\Delta S = nR \ln \frac{V_2}{V_1}$

As expected, $\Delta A = \Delta U - T\Delta S$ is equal simply to $-T\Delta S$ since $\Delta U = 0$ at constant *T* for an ideal gas