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Maxwell Relations from A 



Interrelated Thermodynamic Quantities 
When you are not able to directly measure a given thermo-
dynamic property, it is very useful to express it in terms of 
other properties. 

for a reversible process PdVTdSdU −=

SdTPdVdA −−=

compare with the formal 
derivative of A=A(V,T):	
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SdTTdSdUdA −−= (general) 



Equating Key Cross Derivatives 

James Clerk Maxwell 
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One of many Maxwell relations 
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partial derivatives 
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Utility of a Maxwell Relation 
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From this Maxwell relation we can determine how 
S changes with V given an equation of state 

Integrate at constant T:	
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Note that T is held 

constant during 
integration over V 

Get V (or ρ) dependence of S from P-V-T data. 

Example: Ideal gas 
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(isothermal)

(a previous result derived another way, cf. Video 6.2) 



Entropy of Ethane 
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If V1 is chosen to be so large that a gas behaves ideally (=Vid), 

Ethane at 400 K	
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For real gases, i.e., 
those having no readily 
available, analytical 
equation of state, this 
requires data for how 
pressure varies with 
temperature over a full 
range of volumes (or 
densities, since density 
is equal to V –1) 



Internal Energy of Ethane 
Differentiating A = U – TS wrt V : 

TTT V
ST

V
U

V
A

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
−⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
=⎟

⎠

⎞
⎜
⎝

⎛
∂

∂
(isothermal) 

using 
TV V

S
T
P

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
=⎟

⎠

⎞
⎜
⎝

⎛
∂

∂

Maxwell 
relation 

and P
V
A

T

−=⎟
⎠

⎞
⎜
⎝

⎛
∂

∂

previously 
derived VT T

PTP
V
U

⎟
⎠

⎞
⎜
⎝

⎛
∂

∂
+−=⎟

⎠

⎞
⎜
⎝

⎛
∂

∂

Ethane at 400 K	
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U (P→ 0)
id 14.55 kJ • mol−1 from Q!( )[ ]
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For real gases, i.e., those 
having no readily available, 
analytical equation of state, 
this again requires data for 
how pressure varies with 
temperature over a full 
range of volumes (although 
the plot here is over 
pressures, which are 
obviously readily measured 
for each volume) 



Volume Dependence of A 

Ideal gas example, P = nRT/V :	
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Compare this to a previous result 
for an ideal gas at constant T: 

1
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As expected, ΔΑ = ΔU –TΔS is equal simply to –TΔS 
since ΔU = 0 at constant T for an ideal gas  


