
Statistical Molecular 
Thermodynamics 

Christopher J. Cramer 

Video 8.4 

Maxwell Relations from G 



Working With Gibbs Free Energy 

PVTSUG +−=

using dU = TdS – PdV 

compare with the formal 
derivative of G = G(P,T):	
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Equating Key Cross Derivatives 

James Clerk Maxwell 

€ 

∂G
∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T

=V

€ 

∂G
∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
P

= −Sand 

€ 

∂G
∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T

=V

€ 

∂
∂T

∂G
∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

∂V
∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
P

€ 

∂G
∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
P

= −S

€ 

∂
∂P

∂G
∂T
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = −

∂S
∂P
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
T

Another of many Maxwell relations 
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partial derivatives 
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Utility of The Maxwell Relation 
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From this Maxwell relation we can see how S 
changes with P given an equation of state 

Integrate at constant T:	
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Note that T is held 

constant during 
integration over P 

Get P dependence of S from P-V-T data. 

Example: Ideal gas 
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Entropy of Ethane Again 
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If P1 is chosen to be so small that a gas behaves ideally (P  0), 

Ethane at 400 K	
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For real gases, i.e., 
those having no readily 
available, analytical 
equation of state, this 
requires data for how 
volume varies with 
temperature over a full 
range of pressures 



Enthalpy Dependence on P 
Differentiating G = H – TS wrt P : 
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using 
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Maxwell 
relation 

and 
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Ethane at 400 K	
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For real gases, i.e., those 
having no readily available, 
analytical equation of state, 
this again requires data for 
how volume varies with 
temperature over a full 
range of pressures 



Pressure Dependence of G 

Ideal gas example, V = nRT/P :	
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Compare this to a previous result 
for an ideal gas at constant T: 
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As expected, ΔG = ΔH –TΔS is equal simply to –TΔS 
since ΔH = 0 at constant T for an ideal gas  


