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Natural Independent Variables 



We thus refer to S and V as the natural independent variables of U 

Working with the Simplest Forms 
PdVTdSdU −= (first and second laws) 

If we consider S and V as independent variables of U, the 
coefficients of dS and dV are simple thermodynamic functions.  

Compare with, say, V and T as independent variables: 
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see Video 8.3 

considerably 
more complex 



Differentials to Date 
PdVTdSdU −=Start from the first and second laws: 

(All from the 1st and 2nd laws and definitions of H, A, and G) 

Add d(PV) to both sides: 
d(U+PV) = TdS–PdV+VdP+PdV	



VdPTdSdH +=

Subtract d(TS) from both sides: 
d(U–TS) = TdS–PdV–TdS–SdT	



PdVSdTdA −−=

Add d(PV) and subtract d(TS) 
from both sides: 
d(U+PV–TS) = TdS–PdV+VdP+PdV–TdS–SdT	



VdPSdTdG +−=



Natural Independent Variables 

PdVTdSdU −= S and V	
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 VdPTdSdH += S and P	



A	

 PdVSdTdA −−= T and V	



G	

 VdPSdTdG +−= T and P	



Function Differential Variables 



Associated Maxwell Relations 
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Function 

VdPSdTdG +−=

PdVSdTdA −−=

VdPTdSdH +=

PdVTdSdU −=

Differential 
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Maxwell relation 


