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Chemical Potentials and the Clapeyron Equation 



Free Energy of a Two-Phase System 
The Gibbs energy of two phases in equilibrium with one another — we’ll 
use gas (g) and liquid (l) here for convenience, but the equations are 
general — is simply the sum of the individual phase’s Gibbs free energies: 
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Now, consider transfer of dn moles from the liquid phase to the gas phase 
with T and P kept constant. The change in the Gibbs energy is: 
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Free Energy of a Two-Phase System 
Change in Gibbs free energy with phase transfer: 
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But mass balance dictates: dng = −dnl

So we have: 



Chemical Potential Defined 
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The partial derivatives above are called 
partial molar Gibbs free energies or, more 
commonly, chemical potentials, µ, where: 
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in which case we write: 

€ 

dG = µg −µ l[ ]dng



Phase Transfers 

At equilibrium, dG = 0 — this will be true if µg = µl

€ 

dG = µg −µ l[ ]dng

If µg > µl, then dG < 0 (spontaneous change) iff dng < 0, i.e., 
matter transfers from gas phase to liquid phase  

If µg < µl, then dG < 0 (spontaneous change) iff dng > 0, i.e., 
matter transfers from liquid phase to gas phase  

Out of equilibrium, matter flows from a higher chemical 
potential to a lower chemical potential 



Phase Change Characteristics 
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For a pure substance, the chemical 
potential is simply the molar Gibbs energy, 
an intensive quantity (i.e., like T and P). 
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µα (T ,P) = µβ (T ,P)At equilibrium: so we may write: 

or, equivalently: 



The Clapeyron Equation 

V αdP − S αdT =V βdP − S βdT
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may be rewritten: 

dP
dT

=
S β − S α

V β −V α
=
Δ trsS
Δ trsV

=
Δ trsH
TΔ trsV

which rearranges to: 

The Clapeyron equation relates the 
slope of the coexistence curve (dP/dT) 
to the changes in molar enthalpy and 
volume associated with a phase change 

dP
dT

=
Δ trsH
TΔ trsV

cf. video 7.3 



Self-assessment 

At its standard melting point, water has an enthalpy of fusion 
of 6.01 kJ/mol and a volume of fusion of –1.63 cm3/mol. 
Using the Clapeyron equation (below), predict the melting 
point of water at 1000 bar pressure. 
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Self-assessment Explained 
We can invert the Clapyeron equation to compute how 
temperature should vary with pressure, using the data for 
water at its standard melting point (273.15 K, 1 bar), thus: 
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= −7.41×10−3 K bar−1

So a pressure increase of 999 bar should lower the melting 
point by 7.40 K. Experiment gives 9.3 K. The error derives 
from our assumption that the transition enthalpy and volume 
are independent of temperature, implicit in the Clapeyron 
equation. 



Next:  Clausius-Clapeyron Equation


