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From lecture 5: Consider a pair of degenerate, normalized  
eigenfunctions, φ1 and φ2, of a Hermitian operator A with common 
eigenvalue a. Show that two new functions defined as u1 = φ1 and u2 
= φ2 + Sφ1 are orthogonal, provided that S is properly chosen (i.e., 
determine what value of S is required to enforce orthogonality). 
Show that u1 and u2 remain degenerate with common eigenvalue a. 
 

We are told that φ1 and φ2 are degenerate eigenfunctions of A with eigenvalue a. 
The question is how to pick a value S such that the two functions 
 
 

! 

u1 = "1 and u2 = "2 # S"1 
 
will be orthogonal to one another and still be eigenfunctions of A with eigenvalue a. 
 

To begin, we simply proceed from the definition of orthogonality (and practice 
our newfound mastery of Dirac notation 
 

 

! 

0 = u1 u2

= "1 "2 # S"1

= "1 "2 # "1 S"1

= "1 "2 # S "1 "1

= "1 "2 # S "1
2

= "1 "2 # S

 

 
 
Where the last line follows from the normalization of φ1. 
 
 From rearranging, we have 
 
 

! 

S = "1 "2  
 
This integral (S) is called the “overlap integral” between functions φ1 and φ2. Notice that 
it is zero if the functions are already orthogonal, and it is the square modulus of φ1 if the 
functions are identical (equal to one when the functions are normalized). Thus, S, ranges 
from 0 to 1 depending on how much the two functions “overlap” and hence its name. 
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 This choice of S guarantees orthogonality, but we need to verify that u1 and u2 are 
eigenfunctions of A with eigenvalues a. Of course, by definition of u1 this is a given, 
since it is unchanged from φ1, but what about u2? 
 
 The expectation value of A for u2 is 
 

 

! 

A u2( ) =
u2 A u2

u2
2

=
"2 # "1 "2 "1 A "2 # "1 "2 "1

"2 # "1 "2 "1
2

=
"2 # "1 "2 "1 a"2 # "1 "2 a"1

"2 # "1 "2 "1
2

= a
"2 # "1 "2 "1

2

"2 # "1 "2 "1
2

= a

 

 
QED. 
 
 For those eager for more details, this technique for orthogonalizing functions is 
called Gram-Schmidt orthogonalization. It is easily generalized to multiple functions 
(first you make all other functions orthogonal to the first, now you hold the new second 
one fixed and make all remaining functions orthogonal to it, etc.). The second term in the 
definition of u2 is sometimes called an “orthogonality tail”, since it is a little piece of φ1 
tacked onto φ2 in order to orthogonalize it. 
 
 
From lecture 6: The Hamiltonian operator for a particular one-
dimensional system of mass m that is “free”, in the sense that there 
is no potential energy dependent on the one-dimensional position 
coordinate x, is H = T (i.e., V = 0). 
 
(a)  Show that the set of functions 

! 

" j = sin jx( ) + icos jx( )  where j = ±1, 2, 
3, … are eigenfunctions of both H and of the one-dimensional 
momentum operator. 
 
(b)  What are the expectation values for H and p for the n = 5 
stationary state? Note that since the eigenfunctions in this case are 
not normalized, the expectation value for a given operator A is 
defined as 
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! 

A =
" A"

" "  
 
(c)  What is the relationship between these two expectation values? 
 
 
(a)  Recalling the definitions of the two operators,  
 

  

  

! 

H = T

= "
h
2

2m

d
2

dx
2

 and  
  

! 

p = "ih i( )
d

dx
 

 
the only mathematical operations that we really need to perform are to take the first and 
second derivatives of the trial functions, thus 
 
 

! 

d

dx
sin jx( ) + icos jx( )[ ] = j cos jx( ) " isin jx( )[ ]   

and 

 

! 

d
2

dx
2
sin jx( ) + icos jx( )[ ] = " j2 sin jx( ) + icos jx( )[ ]  

 
with those in hand we may note 
 

 

  

! 

H" j = #
h
2

2m

d
2

dx
2

$ 
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 and  

  

! 

p" j = #ih i( )
d

dx

$ 

% & 
' 

( ) 
sin jx( ) + icos jx( )[ ]

= #ih i( ) j( )[ ] cos jx( ) # isin jx( )[ ]

= #h i( ) j( )[ ] icos jx( ) + sin jx( )[ ]

= # hj( ) i( )[ ]" j

 

 
which illustrates the eigenfunction/eigenvalue relationships between the functions and the 
operators. 
 
(b)  To evaluate the expectation values we must multiply the above equations on the left 
by the complex conjugate of ψ5 and integrate over all x. However, since we have just 
shown that ψ5 is an eigenfunction, we may replace the operators in the integrals with 
their respective eigenvalues, move them in front of the integrals, and we will be left 
having to evaluate only < ψ5 | ψ5 >. Actually, that is not so easy in this case. However, as 
noted above for these unnormalized wave functions, we will simply divide by that 
quantity as well in computation of the expectation values, so the only thing to survive 
will be the eigenvalues. Of course, this is as it must be—we’re using eigenfunctions of 
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the operators as our wave functions. The expectation value of an eigenfunction is just the 
eigenvalue, by definition. Thus, for n = 5, we will have expectation values 
 

  
  

! 

H
j=5

=
25h

2

2m
 and  

  

! 

p
n=5

= "5h i( ) 

 
(c)  The relationship between the expectation values is fairly trivial. Recall that T (the 
first part of the Hamiltonian) is |p|2 / 2m and indeed we see that momentum can be either 
positive or negative depending on the sign of j in the eigenfunction, but the kinetic energy 
is always positive as it depends on j2. 
 
 
From lecture 7: For the particle in a box of length L, what is the 
probability of finding the particle in the intervals 0.45L to 0.55L for 
the following levels:  (a) n = 1;  (b) n = 2;  (c) n = 7,503;  (d) The 
Bohr correspondence principle states that quantum mechanics 
should reduce to classical mechanics for very large quantum 
numbers. Is your final answer consistent with classical mechanics? 
Explain the direction of deviations from the classical answer, if any, 
for cases (a), (b), and (c). 
 
 We will proceed by solving the probabilities generally, and then evaluate those 
probabilities for the particular cases of n = 1, 2, etc.. For the probability over the 
indicated interval, we need to evaluate the square modulus of the wave function 
integrated from 0.45L to 0.55L 
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If we evaluate this for n = 1, 2, 7,503, and infinity (a very large quantum number) the 
probabilities are 0.19836316, 0.00645107, 0.10003432, and 0.1, respectively. 
 
 Case (a) deviates to higher probability because the chosen interval spans the 
center of the box, and the ground-state wave function has its extra amplitude in the center 
of the box. Case (b) deviates to lower probability because its only node is smack in the 
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middle of the chosen interval. Case (c) is very, very close to the classical answer because 
it is such a high quantum number (note that the classical answer is equal probability 
everywhere, so if I pick any interval that is 10% of the box, the probability of finding the 
particle there is 0.1 -- as is shown by the choice of n being infinity). 


