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Answers to Homework Set 3 
 
 

 
From lecture 9: (a)  Rewrite eq. 9-6 in the standard form of an 
eigenvalue equation. (b)  Show that by proper choice of a, the 
function 
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where q is a constant. (c)  Show how you can use the results from 
parts (a) and (b) to determine the energy of the ground state of the 
QMHO. (d)  How do you know that the eigenfunction corresponds to 
the ground state? 
 
(a)  Eq. 9-6 can be rewritten as 
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which is in standard form where the eigenvalue is negative α. 
 
(b) To show that  
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 is an eigenfunction with proper choice of a we require 
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Evaluating the l.h.s. we have 
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and for the prefactor on the r.h.s. to be a constant (so as to satisfy the eigenvalue 
condition) it must be true that a is 

! 

q /2 in which case the eigenvalue will be –2a, which 
is simply 

! 

" q . 
 
(c)  Given that eq. 9-6 was rewritten as above, it is clear that q corresponds to β2 and the 
eigenvalue a will then simply be –β. From eq. 9-5 we know β and thus we have 
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but a is also –α based on our rewriting of eq. 9-6 above. So, noting from eq. 9-5 what α 
is defined to be, we now have 
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if we now solve for E we have 
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which by comparison to eq. 9-22 is indeed the correct result for n = 0 (remember that   

! 

h  is 
h/2π). 
 
(d)  The trial function we have been examining is a gaussian function without nodes (i.e., 
it is nonnegative everywhere) so it must be the ground state wave function. Note that this 
process above could be repeated to get energies for the various excited states by including 
powers of r (that would introduce nodes) and enforcing orthogonality, but it would get to 
be rather painful rather quickly… 
 
 
From lecture 10: HBr and DBr (H = 1H, D = 2H, and Br = 79Br) are 
observed to absorb infrared radiation at 2439 and 1750 cm–1, 
respectively. Answer the following questions:  (a)  In the ground 
vibrational state, which has more average kinetic energy, HBr or 
DBr?  (b)  In units of kg, what is the reduced mass of DBr?  (c)  In 
units of N m–1, what is the force constant for the HBr bond? Is it the 
same for the DBr bond?  (d)  At what frequency would TBr be 
expected to absorb radiation (T = 3H)?  (e)  In units of s–1, what is the 
vibrational frequency of HBr in the state with quantum number n = 
5?  
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(a)  In the ground state, a QMHO has zero-point vibrational energy equal to hν/2 where ν 
is the vibrational frequency. The vibrational frequency is equal to the frequency of the 
photon that is absorbed in order to induce a transition between levels. So, HBr has more 
zero-point vibrational energy than DBr. Moreover, we showed in the in-class homework 
that for the QMHO the average kinetic energy is exactly equal to the average potential 
energy both of which are one-half of the total energy. Since HBr has more total energy 
than DBr, perforce it will have more average kinetic energy than DBr. 
 
(b)  In atomic mass units, the reduced mass of DBr is 158/81. The conversion from amu 
to kg is approximately 1.67 x 10–27 kg amu–1. Thus, the reduced mass of DBr is about 
3.26 x 10–27 kg. 
 
(c)  It is a quick matter to verify that the HBr and DBr frequencies differ by the square 
root of the ratio of their reduced masses (see part (d) for example of TBr) so the two must 
indeed have the same force constant. As we know the vibrational frequency (in units of 
wavenumbers, which must be multiplied by the speed of light to convert to units of s–1; 
see part (e) for example) and the reduced mass for DBr (from above), we can compute k 
by rearrangement of 
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which gives a value of about 354 N m–1. 
 
(d)  Since the force constant is the same irrespective of isotope, we only need the 
reduced-mass ratio to make the requested prediction. In atomic mass units, HBr has a 
reduced mass of 79/80 and TBr has a reduced mass of 237/82. So, the vibrational 
frequency of TBr (and hence the frequency at which it absorbs radiation) should be the 
frequency of HBr times the square root of the ratio of the reduced masses [ ( 79 x 82 ) / 
(80 x 237 ) ] which gives a value of about 1426 cm–1. 
 
(e)  The vibrational frequency of the harmonic oscillator is the same for all quanum 
levels, and it is equal to the frequency of radiation absorbed to induce a transition 
between levels. For HBr that frequency is 2439 cm–1. To convert to units of s–1 we need to 
multiply by the speed of light, c = 3 x 1010 cm s–1 which gives a frequency of 7.3 x 1013 
s-1. 
 
 
From lecture 11: All of the angular momentum operators that we 
have discussed thus far are Hermitian. For an arbitrary function Φ 
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having finite total angular momentum, what is required for it to be 
true that  
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"L+L– " = "L#L+ "  
 
where 
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L+L–  is the operator defined by sequential application of the 
lowering operator and then the raising operator, and vice versa? 
Note that an “arbitrary” function means that it need not be an 
eigenfunction of L2. If you don’t know where to start on this 
problem, which is certainly not trivial, take another look at eqs. 6-7 
and 6-8 and their surrounding discussion and think about how you 
might be able to apply analogous reasoning to this problem. 
 
 An arbitary function can be expressed as a linear combination of the 
eigenfunctions of Lz since, as eigenfunctions of a Hermitian operator, they are 
orthonormal and span all space. Since the expectation value of L2 for the arbitrary 
function is finite, there will be a maximum and a minimum value for ml, i.e., the linear 
expansion will involve a finite number of terms. So, for our arbitrary function Φ, we have 
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where the various values c are coefficients multiplying the eigenfunctions of Lz that are 
indexed by their respective eigenvalues. 
 
 If we consider applying the lowering operator to Φ, recall that it will annihilate 
the eigenfunction having the most negative eigenvalue, and transform every other 
eigenfunction to the one having the next lower eigenvalue, i.e.,  
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If we then apply the raising operator, it has no effect on the null wave function 
(remember, the null wave function is not the eigenfunction of Lz having eigenvalue zero, 
it is the absence of any wave function at all) and it takes every other eigenfunction up to 
the one having the next higher quantum number. Thus 
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Now obtaining the expectation value just involves left multiplying by Φ, integrating over 
all space, and normalizing. That is 
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where the second line follows from the first because of the orthonormality of the 
eigenfunctions Ψ.  
 
 A completely analogous analysis for the alternative operator gives 
 

 

  

! 

"L#L+ "

""
=

c#ml
$#ml + c#ml +1$#ml +1 +K+ cml#1$ml#1 + cml$ml

c#ml
$#ml + c#ml +1$#ml +1 +K+ cml#1$ml#1 + 0

c#ml
$#ml + c#ml +1$#ml +1 +K+ cml#1$ml#1 + cml$ml

c#ml
$#ml + c#ml +1$#ml +1 +K+ cml#1$ml#1 + cml$ml

=
c#ml

2

+ c#ml +1

2

+K cml#1

2

c#ml

2

+ c#ml +1

2

+K cml#1

2

+ cml

2

 

 
 The only way these two can be equal is if the numerators are equal (the 
denominators already are). For that to be the case, it must be true that 
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That is, the square modulus of the coefficient for the angular momentum basis function 
having the most negative possible angular momentum in the z direction must be equal to 
that for the angular momentum basis function having the most positive possible angular 
momentum in the z direction. One possibility would be, for instance, that both 
coefficients be zero, in which case the sequential application of the raising and lowering 
operators would always return unchanged the starting wave function. 
 
  As a final note for the true rigor jockey, the above proof is ever so slightly sloppy. 
To be rigorous, we would have had to acknowledge that the arbitrary function Φ must 
actually be expressed as a linear combination of a finite number of eigenfunctions of L2 
each one of which consists of a degenerate, finite set of eigenfunctions of Lz. This makes 
the notation a bit messier, but the proof would otherwise be exactly the same. 
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