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From lecture 13: Consider a 2-dimensional so-called planar rigid 
rotator—a quantum mechanical compact disc, if you will. In this 
system, rotation is confined to a plane, so all of the angular 
momentum is along a single axis. The Schrödinger equation for this 
system is thus 
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If the moment of inertia I is taken to be 1/2, what are the 
eigenfunctions and eigenvalues for this system (use spherical polar 
coordinates)? Looking at the Schrödinger equation for the free 
particle may be helpful, but this case is quantized, while that for the 
free particle is not—why is there a difference? What are the lowest 3 
possible energies? What degeneracies are associated with these 
energies? 
 
We have the restricted Schrödinger equation 
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or, noting that I = 1/2 and using eq. 12-8 for Lz 
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where φ is the variable describing rotation of the disk from 0 to 2π. This equation can be 
rearranged to 
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which looks almost identical to the free particle wave function but with different 
constants, and has the solutions (eigenfunctions) 
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 For the free particle, all values of x (which replaces φ as the variable) are allowed. 
But, for the rotating disk, the wave function must be identical for φ´ = φ + 2π since this 
will represent a complete revolution. Recalling that  
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it should be clear that  
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if and only if n is an integer, i.e., 0, ±1, ±2, … So, periodicity requires that 
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or, solving for E (the eigenvalues) 
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For the n = 0 level, the total energy is zero (stationary disk). This is the lowest level and it 
is not degenerate. The next higher level has energy   
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2 , but this can be achieved for either 

n = 1 or n = –1 (the disk has the same kinetic energy whether it is rotating clockwise or 
counterclockwise). The next higher level still has energy   
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degenerate. 
 
 To complete the earlier part of the problem, we only need to determine the 
normalization of the eigenfunctions. If we use our above value for E in the general 
equation for Ψ above, we have 
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so the normalization constant C is determined as 
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So, the final eigenfunctions are 
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where n = 0, ±1, ±2, …  
 
 

From lecture 14: What is the error introduced in the ionization 
potential of the H atom if the mass of the electron is used in place of 
the reduced mass of the H atom? 
 
 The ionization potential depends linearly on the mass term, so for the ratio of the 
ionization potentials we need only compute 
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So, the error is about five one-hundredths of a percent. Thus, instead of an ionization 
potential of –13.6 eV, one would compute –13.6 eV (the error does not appear with only 
3 significant digits). It takes an excruciatingly sensitive instrument to measure the 
difference (although the measurement has indeed been made, and one needs to use the 
reduced mass to achieve perfect accuracy). 
 
 
From lecture 15: If you were to measure the distance of a 2s electron 
from the nucleus in a He+ atom, what would be the average value, in 
Å, that you would obtain after a very, very large number of 
measurements? (Hint:  if you’ve no idea where to start on this 
problem, think about what operator gives the distance of the 
electron from the nucleus.) (Caveat:  be very careful about using 
proper limits and volume elements in any integrals you might try to 
solve—perhaps with the help of an integral table…) Will the value 
for Li2+ be the same, or different? Why? 
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 The operator that provides the distance of the electron from the nucleus in the 
spherical polar coordinate system used for an atom is simply r. An average from many 
measurements is the expectation value, <r>. Since our 2s wave function is normalized, 
we have in general 
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Note that the angular parts of the expectation value simply integrate to 4π. To solve the 
final integrals, we need simply to look up that 
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which then gives for He+, where Z = 2, 
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 Since we’ve used atomic units in the wave function, the expectation value is also 
in a.u. (recall that the atomic unit of distance is the bohr). The conversion factor tabulated 
in lecture 15 is 1 bohr = 0.529 Å, so our average measurement would be 1.587 Å. 
 
 The value for Li2+ would be smaller, since the more highly charged nucleus of Li 
will hold the 2s electron more tightly than the less charged nucleus of He. If one carries 
out the calculation, one obtains an average distance of 2 bohr, or 1.058 Å. 
 
 


