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From lecture 18: On the interval 0 to 1, what is the square modulus 
(in terms of a and b) of the trial wave function in eq. 18-15? 
 
 Eq. 18-15 was 
 
 ! x;a,b( ) = xa 1" xb( )  (18-15) 
 
By analogy to eq. 18-5, we find the square modulus as 
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From lecture 19: Today’s in-class homework solution showed that 
the expectation value of the momentum operator for any real wave 
function must be zero. Why doesn’t the same proof hold for any 
complex wave function? 
 
 Consider any complex wave function of one dimension f. 
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where we have assumed without loss of generality that f is normalized over the 
integration interval. We can try to solve the integral using integration by parts. If we use 
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then we may write 
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Again, the first term on the r.h.s. drops out because the square modulus of a well behaved 
wave function must be zero at its endpoints. However, this is of little help, since the 
remaining equation is nothing but a restatement of the relationship between a complex 
function and its complex conjugate, namely 
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This relationship is satisfied by all complex valued functions, so the integral certainly 
need not be zero, and indeed eigenfunctions of the momentum operator must be complex 
valued. 
 
 
From lecture 20:  
 
 What are the normalized eigenfunctions and eigenvalues for Sx 
and Sy, respectively? 
 
 This problem may be done in at least two different ways. The intuitive way is to 
notice that both Sx and Sy operate on the spin functions α and β to give constants times the 
opposite spin function. That suggests that a linear combination of the 2 spin functions 
might work. So, to be specific, recall that 
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Now, consider the spin function (α + β). If we operate on this function with Sx we have 
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so, the function is indeed an eigenfunction of Sx with eigenvalue   

! 

h /2 (the same 
eigenvalue that α has for Sz). However, this spin function is not normalized—to check, 
note that 
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So, to normalize our eigenfunction, we will need to multiply by 2–1/2, and the normalized 
eigenfunction (having the same eigenvalue as that determined above) is 
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But, we expect, by analogy to Sz, that Sx will have another spin eigenfunction orthogonal 
to the first. The obvious choice is 
 

! 

1

2
" #$( )  

 
and inspection verifies that 
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where normalization is easily established too 
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Finally, if we were to express these spin functions in 2 x 2 matrix format, recalling that 
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we would have 
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Some people may have started with the matrix formulation and seen this relationship, and 
that’s fine too. Actually, the matrix picture is quite helpful, because noting that 
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it seems logical that the eigenfunctions of Sy will be similar to those of Sx but with i 
involved somewhere. Some trial and error leads to 
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To check this, note 
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and 
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So there is again a perfect analogy with Sz with respect to eigenvalues (and now you can 

see why for the spin 1/2 system 
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and analogously for the other spin function (remember that a factor of i pulled out from a 
bra comes out as –i because the bra is a complex conjugate!) 
 


