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From lecture 25: Using the third root of the secular equation for the 
allyl system, verify the orbital coefficients given in eq. 25-16 
 

The second root was E = α. Plugging that value into the linear equations 
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recalling that for the allyl system H11 = H22 = H33 = α, H12 = H21 = H23 = H32 = β, 
H13 = H31 = 0, S11 = S22 = S33 = 1, and all other S values are 0, we have 
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These equations simplify to 
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a1 2" + a2" = 0

a1" + a2 2" + a3" = 0

a2" + a3 2" = 0

 

 
If we subtract the third equation from the first, we obtain 
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a1 2" # a3 2" = 0 
 
which gives 
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a1 = a3  
 
If we use this relationship in the second equation above we have 
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a1" + a2 2" + a1" = 0

 

 
which gives 
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Normalization requires that 
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which leads to the final result 
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QED. 

 
 
From lecture 26:  
 
 What is the Hartree-product wave function for 2 non-
interacting quantum mechanical harmonic oscillators (QMHOs) of 
reduced mass 1 a.u. in a potential having a force constant of 1 a.u., 
where the first QMHO is in the ground state and the second is in the 
first excited state? Determine the energy of the two QMHO system as 
an expectation value of the Hartree-product wave function. Is the 
correct Hamiltonian for this system separable into one-QMHO 
terms? If the QMHOs were interacting, explain how you could use 
perturbation theory to determine the energy of the system correct 
to first order (you don’t have to actually do it, just explain how to 
do it). 
 
 The Hartree product is simply the product of the 2 relevant QMHO wave 
functions. Thus it will be (in a.u.) 
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where each QMHO has its own x coordinate describing its position in the box. 
 
 Since the QMHOs are defined to be non-interacting, the total Hamiltonian is 
indeed separable as simply the sum of the Hamiltonian operators for each QMHO. In that 
case, the Hartree-product wave function is an eigenfunction of the Hamiltonian and its 
eigenvalue is the sum of the one-particle eigenvalues. Thus the energy for this system is 
(in a.u., see eq. 9-22) 
 

! 

E =
1

2
+
3

2

= 2

 

 
 If the particles were interacting, then the total Hamiltonian would be 
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where V´ would describe the interaction, e.g.,  
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The first-order correction to the energy for the unperturbed Hamiltonian is determined as 
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so we would need to evaluate 
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which doesn’t look as though it would be so pleasant, but that’s how one would do it… 
 
 
From lecture 27:  
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 None assigned. 
 
From lecture 28:  
 
 Consider the phosphine molecule (PH3). If we decide to do a 
calculation on phosphine and use the STO-3G basis set, how many 
contracted basis functions will we need in order to minimally 
represent the total number of atomic orbitals spanned by the core 
and valence electrons of the phosphorus atom and the three 
hydrogen atoms? How many one-electron integrals will there be that 
require evaluation? How many two-electron integrals will require 
evaluation? In each of the last two cases, how many primitive 
integrals will need to be evaluated? Do you see anything that makes 
the workload slightly less onerous than your formal analysis? How 
many occupied orbitals will there be in the final Slater determinant? 
 
 Phosphorus requires 1s, 2s, 2p, 3s, and 3p orbitals (the 3d orbitals are not 
occupied so we do not need them in a minimal representation). The total basis functions 
on P are thus 1 + 1 + 3 + 1 + 3 = 9. There are 3 H atoms, each of which requires one 1s 
function, so the grand total number of basis functions N is 12. There are N2 kinetic-energy 
one-electron integrals and MN2 nuclear-attraction integrals where M is the number of 
nuclei, i.e., 4. So, that’s 144 in the first case and 576 in the second case for a total of 720 
one-electron integrals. There are formally N4 2-electron integrals, which is 20,736.  
 
 The numbers computed above involve the contracted basis functions, each of 
which, since the basis is STO-3G, is composed of 3 primitive functions. Thus, for any 
individual one-electron integral, there will be 3 x 3 = 9 separate integrals involving the 
primitives. There are thus 9 x 720 = 6480 individual primitive one-electron integrals. As 
for the two-electron integrals, again, every individual integral will require considering 
every possible combination of constituent primitives which is 3 x 3 x 3 x 3 = 81. Thus, 
the total number of primitive two-electron integrals is 81 x 20,736 = 1,679,616. 
Symmetry reduces these numbers as described in Lecture 29 by a fairly substantial 
margin. The final Slater determinant will require n/2 doubly occupied molecular orbitals 
to hold the n electrons of phosphine. Given the molecular formula, that is 15 electrons 
from P plus 3 from three H atoms for a total of 18 electrons and thus a Slater determinant 
comprised of 9 MOs.  
 
or (since there was an error in the original homework that referred to “phosphine (HCl)” 
 
 Consider the hydrogen chloride molecule (HCl). If we decide 
to do a calculation on HCl and use the STO-3G basis set, how many 
contracted basis functions will we need in order to minimally 
represent the total number of atomic orbitals spanned by the core 
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and valence electrons of the chlorine atom and the hydrogen atom? 
How many one-electron integrals will there be that require 
evaluation? How many two-electron integrals will require 
evaluation? In each of the last two cases, how many primitive 
integrals will need to be evaluated? Do you see anything that makes 
the workload slightly less onerous than your formal analysis? How 
many occupied orbitals will there be in the final Slater determinant?  
 
 Chlorine requires 1s, 2s, 2p, 3s, and 3p orbitals (the 3d orbitals are not occupied so 
we do not need them in a minimal representation). The total basis functions on Cl are thus 1 
+ 1 + 3 + 1 + 3 = 9. There is 1 H atom, which requires one 1s function, so the grand total 
number of basis functions N is 10. There are N2 kinetic-energy one-electron integrals and 
MN2 nuclear-attraction integrals where M is the number of nuclei, i.e., 2. So, that’s 100 in 
the first case and 200 in the second case for a total of 300 one-electron integrals. There are 
formally N4 2-electron integrals, which is 10,000. 
 
 The numbers computed above involve the contracted basis functions, each of which, 
since the basis is STO-3G, is composed of 3 primitive functions. Thus, for any individual 
one-electron integral, there will be 3 x 3 = 9 separate integrals involving the primitives. 
There are thus 9 x 300 = 2700 individual primitive one-electron integrals. As for the two-
electron integrals, again, every individual integral will require considering every possible 
combination of constituent primitives which is 3 x 3 x 3 x 3 = 81. Thus, the total number of 
primitive two-electron integrals is 81 x 10,000 = 810,000. Symmetry reduces these numbers 
as described in Lecture 29 by a fairly substantial margin. The final Slater determinant will 
require n/2 doubly occupied molecular orbitals to hold the n electrons of hydrogen chloride. 
Given the molecular formula, that is 17 electrons from Cl plus 1 from the H atom for a total 
of 18 electrons and thus a Slater determinant comprised of 9 MOs.   


