Chem 3502/4502 **Physical Chemistry II (Quantum Mechanics)** 3 Credits **Spring Semester 2006** *Christopher J. Cramer*

Answers to Homework Set 9

From lecture 34: What is the rate constant at 298 K for a unimolecular reaction that has a free-energy of activation of 21 kcal mol–1? Now, rearrange eq. 34-4 so that all terms involving the variables t and [A] are on opposite sides of the equation. Integrate both sides from the starting point $t = 0$, $[A] = [A]_0$ to $t = t'$, $[A] =$ $[A]_{t'}$ to obtain an expression for the concentration $[A]_{t'}$ relative to the starting concentration $[A]_0$ at any time t'. Using this equation, what is the half-life (the time required for $[A]_t$ to equal $\frac{1}{2}[A]₀$) for a unimolecular reaction as a function of the rate constant k ? What is the half-life for the specific case of the unimolecular reaction having a free energy of activation of 21 kcal mol⁻¹ (which is about right for rotation about the C–N bond in an amide, for instance)?

We must evaluate

$$
k = \frac{k_{\rm B}T}{h}e^{-(G_{\rm TS} - G_{\rm A})/RT}
$$

for $\Delta G = 21$ in units of kcal mol⁻¹. In that case, we must express R in units of kcal mol⁻¹ K−1 and our exponential is

$$
e^{-(21)/(0.0019872 \times 298)} = 3.96 \times 10^{-16}
$$

and we have

$$
k = \frac{k_{\rm B}T}{h} \times 3.96 \times 10^{-16}
$$

using $k_B = 1.3806 \times 10^{-23}$ J K⁻¹, *T* = 298 K, and *h* = 6.626 x 10⁻³⁴ J s, we derive 2.46 x 10^{-3} s⁻¹.

The requested rearrangement of eq. 34-4 gives

$$
-\frac{d[A]}{[A]} = kdt
$$

If we integrate both sides over the indicated limits we have

$$
-\int_{[A]_0}^{[A]_{t'}} \frac{d[A]}{[A]} = k \int_0^{t'} dt
$$

\n
$$
-\ln([A])\Big|_{[A]_0}^{[A]_{t'}} = kt \Big|_0^{t'}
$$

\n
$$
\ln\Big(\frac{[A]_0}{[A]_{t'}}\Big) = kt' \qquad \left\{\text{note} \quad \ln\Big(\frac{[A]_0}{[A]_{t'}}\Big) = \ln([A]_0) - \ln([A]_{t'}\Big) \right\}
$$

solving for the half-life time at which $[A]_t' = \frac{1}{2}[A]_0$ we have

$$
\ln\left(\frac{[A]_0}{\frac{1}{2}[A]_0}\right) = kt'
$$

$$
\ln 2 = kt'
$$

$$
\frac{\ln 2}{k} = t'
$$

amide rotation having a barrier of 21 kcal mol⁻¹, we can use the rate constant derived So, independent of starting concentration, the half life of a unimolecular reaction is the natural logarithm of 2 divided by the rate constant *k*. For the particular case of, say, an above to predict a half life of 282 seconds, or a bit less than 5 minutes.

From lecture 35:

Use the virial theorem (described in the solved homework of Lecture 16) to prove that since H_2 is bound (i.e., is lower in energy than two separated H atoms) then the kinetic energy of the electrons in H_2 must be greater than it is in two separated H atoms.

For any system we have

$$
E = T + V
$$

where E is the total energy, T is the kinetic energy, and V is the potential energy. For electronic structure problems, the virial theorem says that

$$
V = -(2T)
$$

If we make this substitution above, we have

 $E = -T$

So, if total energy goes down (becomes more negative), then kinetic energy must increase. Since bonding is a situation where energy goes down, the point is proven.

Q.E.D.