Chemistry 3502/4502

Final Exam Part I

May 14, 2005

1.	For	which	of the	below	systems	is	< <i>H</i> >	=	< <i>T</i> >	where	H	is	the	Hamilton	ian
operato	or an	d T is t	ne kine	tic-ener	gy operat	or?)								

(a)	The free particle	(e)	The one-electron atom
(b)	The particle in a box	(f)	(a) and (d)
(c)	The rigid rotator	(g)	(a), (b), and (c)
(d)	The harmonic oscillator	(h)	All of the above

2. Which of the below statements about computed molecular vibrational frequencies is/are true?

(f)

- (a) They may be used to verify the (e) nature of stationary points (as minima, transition-state structures, etc.)
- (b) The vibrational partition function may be computed from them
- (c) There are in general 3N-6 of them (g) where N is the number of atoms

(d)

They may be used to compute the (h)

zero-point vibrational energy as $ZPVE = \sum_{i}^{\text{normal modes}} \frac{1}{2}hv_i \text{ where } h \text{ is}$ Planck's constant and v is a

frequency

At the HF level, they are systematically about 10% too large in magnitude compared to measured infrared spectra

(a) and (d)

(a), (c), (d), and (e)

All of the above

NAME: _____

3.	Given a particle of mass m in a b	ox of	length L having the wave function
	$\Psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$, what is the end	ergy of	the level corresponding to $n = 2$?
(a)	Since this wave function is not an eigenfunction of the Hamiltonian the question cannot be answered	(e)	$\frac{16\pi^2\hbar^2}{L^2}$
(b)	4 times the energy of the ground state	(f)	(c) and (d)
(c)	$<\Psi \mid p_x^2 \mid \Psi >$	(g)	(b) and (e)
(d)	$8\hbar^2/mL$	(h)	None of the above
4.	For the diatomic molecule HeH+, wh mass 1, what is the reduced mass?	ere He	has atomic mass 4 and H has atomic
(a)	1/5	(e)	5 / 4
(b)	1 / 4	(f)	It depends on the angular momentum
(c)	4 / 5	(g)	Cannot be determined from information given
(d)	1	(h)	None of the above
5.	Which of the following statements harmonic oscillator?	s is/are	true for the quantum mechanical
(a)	The ground state energy is equal to the energy at the bottom of the potential		The wave functions are all even eigenfunctions of the parity operator
(b)	The number of nodes is equal to $n+1$, where n is the energy level	(f)	The selection rule for spectroscopic transitions is $n \rightarrow n \pm 1$
(c)	As the force constant goes to zero, the entropy goes to zero	(g)	(a), (c), (e), and (f)
(d)	All wave functions have zero	(h)	All of the above

amplitude beyond the classical

turning points

- 6. Which of the following wave functions has the greatest degeneracy?
- (a) Particle in a box, level n = 8
- (e) Spin-free hydrogenic wave function, n = 3

(b) Rigid rotator, l = 4

- (f) Relativistic free electron at rest
- (c) Quantum mechanical harmonic (g) oscillator, level n = 25
- (b) and (e) have the same degeneracy which is greater than all of the others
- (d) Spin-free hydrogenic wave (h) function, n = 6, l = 1
- (a) through (f) are all singly degenerate
- 7. Which of the below statements is false?
- (a) Gaussian orbitals fall off in (e) amplitude more rapidly with distance than do hydrogenic orbitals
- The variational principle permits the expectation value of the energy of a variational wave function to be judged as: the lower in energy it is, the more accurate it is.
- (b) Tunneling is a quantum mechanical phenomenon that permits particles to penetrate finite potential barriers over which the particles do not have sufficient energy otherwise to pass; tunneling becomes more probable as the particle becomes lighter
- The concept of the potential energy surface derives from the Born-Oppenheimer approximation, which decouples nuclear and electronic motion
- (c) When two operators commute, the Heisenberg uncertainty principle says that we may not simultaneously measure their respective expectation values to infinite accuracy
- The particle in a box and the quantum mechanical harmonic oscillator have zero-point energy, while the free particle and the rigid rotator do not.

(g)

(h)

- (d) For one-electron atoms, hydrogenic orbital eigenfunctions of the Hamiltonian satisfy the virial theorem $\langle V \rangle = -2 \langle T \rangle$
- If $\langle \Psi_i | \mu | \Psi_f \rangle = 0$ where Ψ_i is an initial state, Ψ_f is a final state, and μ is the dipole moment operator, then absorption of radiation cannot induce a transition from Ψ_i to Ψ_f

 (a) The number of nodes in Y_{l,ml} is l (e) Y_{0,0} is a constant everywhere in space (b) (Y_{1,0} T Y_{1,0}) > (Y_{T,0} T Y_{T,0}) if l > l' (f) (a) and (e) (c) The real spherical harmonics are (g) (a), (b), (c) and (e) not all eigenfunctions of L_z (d) The complex spherical harmonics (h) None of the above are not all eigenfunctions of L² 9. Which of the following statements about molecular hydrogen (H₂) is/are true? (a) Bonding occurs because electrons (e) An analytic solution of the in the σ bond repel each other less than if they were in their respective unmixed 1s orbitals (b) Given a minimal basis set, the (f) (b) and (c) ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (c) mCSCF theory optimizes the equivalent to an exact solution of the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above respect to basis set size than CISD 	8.	Which of the following statements ab	out the	spherical harmonics <i>Y</i> is/are <i>true</i> ?
 (b) ⟨Y_{1,0} T Y_{1,0}⟩ > ⟨Y_{1',0} T Y_{1',0}⟩ if 1 > 1' (f) (a) and (e) (c) The real spherical harmonics are (g) (a), (b), (c) and (e) not all eigenfunctions of L_z (d) The complex spherical harmonics (h) None of the above are not all eigenfunctions of L² 9. Which of the following statements about molecular hydrogen (H₂) is/are true? (a) Bonding occurs because electrons (e) An analytic solution of the in the σ bond repel each other less than if they were in their respective unmixed Is orbitals (b) Given a minimal basis set, the (f) (b) and (c) ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above 	(a)	The number of nodes in Y_{l,m_l} is l	(e)	- , -
not all eigenfunctions of L _z (d) The complex spherical harmonics (h) None of the above are not all eigenfunctions of L ² 9. Which of the following statements about molecular hydrogen (H ₂) is/are true? (a) Bonding occurs because electrons (e) An analytic solution of the in the σ bond repel each other less than if they were in their respective unmixed 1s orbitals (b) Given a minimal basis set, the (f) (b) and (c) ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of orbitals for wave functions the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	(b)	$\langle Y_{l,0} T Y_{l,0}\rangle > \langle Y_{l',0} T Y_{l',0}\rangle$ if $l>l'$	(f)	-
 are not all eigenfunctions of L² 9. Which of the following statements about molecular hydrogen (H₂) is/are true? (a) Bonding occurs because electrons (e) An analytic solution of the in the σ bond repel each other less than if they were in their respective unmixed Is orbitals (b) Given a minimal basis set, the (f) (b) and (c) ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above 	(c)	<u> </u>	(g)	(a), (b), (c) and (e)
(a) Bonding occurs because electrons (e) An analytic solution of the in the σ bond repel each other less Schrödinger equation is available than if they were in their respective unmixed 1s orbitals (b) Given a minimal basis set, the (f) (b) and (c) ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	(d)	-	(h)	None of the above
in the σ bond repel each other less than if they were in their respective unmixed 1s orbitals (b) Given a minimal basis set, the (f) (b) and (c) ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	9.	Which of the following statements ab	out mol	ecular hydrogen (H ₂) is/are true?
ground-state CID wave function is composed of eight determinants (c) There are ionic terms in the RHF (g) (a), (c), (d), and (e) ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of orbitals for wave functions the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	(a)	in the σ bond repel each other less than if they were in their respective	(e)	Schrödinger equation is available
ground-state wave function (d) The RHF ground-state wave (h) All of the above function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of orbitals for wave functions the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	(b)	ground-state CID wave function is	(f)	(b) and (c)
function has two occupied orbitals 10. Which of the below statements about correlated levels of electronic structure theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of orbitals for wave functions the Schrödinger equation expressed as more than a single Slater determinant (b) MP4 is size consistent (f) (a) and (d) (c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	(c)		(g)	(a), (c), (d), and (e)
theory is/are true? (a) Full CI with an infinite basis set is (e) MCSCF theory optimizes the equivalent to an exact solution of the Schrödinger equation the Schrödinger equation the Schrödinger equation the Schrödinger equation to the Schrödinger equati	(d)	C	(h)	All of the above
equivalent to an exact solution of the Schrödinger equation the Schrödinger equation the Schrödinger equation the Schrödinger equation to the			out corr	related levels of electronic structure
(c) CISD is variational (g) (a), (b), and (c) (d) MP2 scales more favorably with (h) All of the above	(a)	equivalent to an exact solution of	(e)	orbitals for wave functions expressed as more than a single
(d) MP2 scales more favorably with (h) All of the above	(b)	MP4 is size consistent	(f)	(a) and (d)
			_	
	(d)	·	(h)	All of the above

Chemistry 3502/4502

Final Exam Part II

May 14, 2005

- 1) On the various parts of the short-answer problem, show your work in full.
- 2) Please write your name at the bottom of each page.
- 3) Please mark your exam with a pen, not a pencil. If you want to change an answer, cross your old answer out and circle the correct answer. Exams marked with pencil or correction fluid will not be eligible for regrade under any circumstances.

Score on Next Page after Grading

NAME:	
-------	--

TWO ELECTRONS IN TWO ORBITALS

1) Provide the name of an organic functional group whose reactivity is well explained by a 2-electron-in-2-orbital model.
2) What are the allowed eigenvalues of S^2 for a 2-electron-in-2-orbital wave function?
3) Consider the 1s and 2s orbitals of the He $(Z=2)$ atom, which, with 2 electrons, is an uncharged 2-electron-in-2-orbital system:
a) How many different electronic states may this system have?
b) In shorthand notation, list all of these states from lowest to highest in energy.
c) Write any two possible determinants for this system in full algebraic detail (i.e., not just a shorthand representation).
d) What is the full Hamiltonian for He (in a.u.)?
NAME:

e) In terms of one-electron orbital energies ε_{1s} and ε_{2s} and Coulomb and exchange integrals J_{ij} and K_{ij} (where i and j may each be either 1s or 2s), what is the energy difference between the states 1 $1s^{2}$ > and 1 $2s^{2}$ >?
f) Which is larger, J_{1s1s} or J_{2s2s} ? Explain why.
g) What is the configuration interaction (CI) matrix element H_{mn} between the states $1 \mid 1s^2 > $ and $1 \mid 2s^2 > $?
h) List any two states (shorthand notation is fine) whose corresponding CI matrix element will be zero <i>because of Brillouin's theorem</i> .
i) List any two states (shorthand notation is fine) whose corresponding CI matrix element will be zero for a reason <i>other</i> than Brillouin's theorem. Explain your choice.

NAME: _____