Which of the following phenomena could not be explained by classical physics 1. and required a quantum hypothesis in order to make theory agree with experiment?

(a)	Blackbody spectra	(e)	The motion of a pendulum					
(b)	Diffraction of light	(f)	(a), (c), and (d)					
(c)	Low-temperature heat capacity in perfect crystals	(g)	(a), (b), and (d)					
(d)	The photoelectric effect	(h)	None of the above					
2.	Which of the following did Bohr <i>not</i> assume in order to derive a model consistent with the photoemission spectra of one-electron atoms?							
(a)	The electron is a delocalized wave	(e)	The ionization potential is equal to the work function					
(b)	The angular momentum of the electron is quantized	(f)	(a) and (b)					
(c)	The one-electron atom is like a particle in a box	(g)	(a), (c), (d), and (e)					
(d)	The Coulomb potential is quantized	(h)	None of the above					
3.	Which of the following statements about the de Broglie wavelength λ are <i>true</i> ?							
(a)	$\lambda = -h / p$	(e)	λ is a constant, like Planck's constant					
(b)	λ increases as momentum increases	(f)	All of the above					
(c)	λ decreases as mass increases if velocity is constant	(g)	(a), (b) and (e)					
(d)	A particle that has zero velocity has an infinite de Broglie wavelength	(h)	(c) and (d)					
4.	Which of the below equations can be functions f and g ?	be false	e for an arbitrary pair of orthonormal					
(a)	$< f ^2 > < g ^2 > < 1$	(e)	$f^*g - g^*f = 0$					
(b)	$\langle f \mid H \mid g \rangle = 0$	(f)	(a) and (c)					
(c)	$< f \mid g > \neq < f \mid g >^*$	(g)	(b), (d) and (e)					

(h)

All of the above

- (c) $\langle f | g \rangle \neq \langle f | g \rangle^*$
- fg = 0(d)

5. Which of the following statements about a well behaved wave function is *false*?

- (a) It must be nowhere equal to zero (e)
- (b) It may not take on complex values (f)
- e) It must be an eigenfunction of the momentum operatorf) Its square modulus has units of
- (c) It must be equal to its complex (g) (d) and (f) conjugate
- (d) It must be quadratically integrable
- (h) (a), (b), (c), and (e)

probability density

- 6. Which of the below expectation values are zero?
- (a) $< \sin x | x | \cos x >$ (c) < f | g > < g | f >(b) $< \sin^2 x | x | \cos^2 x >$ (c) $< \Psi | H | \Psi >$ where Ψ is a given by the formula of the formula of

7. If a normalized wave packet Ψ is given as $\Psi(x, y, z, t) = \sum_{n=1}^{\infty} c_n \psi_n(x, y, z) e^{-iE_n t/\hbar}$,

what is the probability that an experiment will cause the system to collapse to the specific stationary state *j*?

- (a) Quantum mechanics does not allow (e) c_j you to know this probability
- (b) $c_j^*c_j$ (f) c_j^* (c)One(g)(b) and (d)(d) $|c_j|^2$ (h)Only Schrödinger's cat knows

- 8. Which of the following statements are true about the free particle?
- (a) Its time-independent Schrödinger (e) equation is $\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} - E\right)\Psi(x) = 0$
- (b) It may be regarded as having a (f) wave function that is the superposition of a left-moving particle and a right-moving particle
- (c) Its energy levels are all nonnegative

Valid wave functions include

$$\Psi(x) = Ae^{ikx} + Be^{-ikx}$$
 where
 $k = \frac{\sqrt{2mE}}{\hbar}$

Valid wave functions include $\Psi(x) = N \cos kx$ where N is a normalization constant and k is defined in (e) above

- (g) All of the above
- (d) Its energy levels are not quantized

9. Given a particle of mass *m* in a box of length *L* having the wave function $\Psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right),$ what is the energy of the level corresponding to n = 4?

(a)	Since this wave function is not an eigenfunction of the Hamiltonian	(e)	$\frac{16\pi^2\hbar^2}{mL^2}$
	the question cannot be answered	_	
(b)	16 times the energy of the ground	(f)	(c) and (d)
	state		
(c)	$\langle \Psi p_x^2 \Psi \rangle$	(g)	(b) and (e)
(d)	$8\hbar^2/mL^2$	(h)	None of the above

10. On which of the below functions does the parity operator Π act in the fashion $\Pi[f(x)] = (1)f(x)$?

(a)	x	(e)	Any	eigenfunction	of	the
			Hamiltonian			
(b)	<i>x</i> ⁻¹	(f)	(b) and (d)			
(c)	e^{ix}	(g)	(a), (b),	and (d)		
(d)	cosx	(h)	(b), (d),	, and (e)		

Short-answer (20 points)

Prove that, given a pair of normalized but *not* orthogonal functions ψ_1 and ψ_2 , the function $\psi_3 = \psi_2 - S\psi_1$ is orthogonal to ψ_1 if S is the overlap integral of ψ_1 and ψ_2 . Is ψ_3 normalized? (Use the back of the page if necessary).

We evaluate

$$\langle \psi_1 | \psi_3 \rangle = \langle \psi_1 | \psi_2 - S \psi_1 \rangle$$

= $\langle \psi_1 | \psi_2 \rangle - S \langle \psi_1 | \psi_1 \rangle$
= $S - S \cdot 1$
= 0

which proves the orthogonality (we use normalization of ψ_1 in going from line 2 to 3).

With respect to normalization, we evaluate

$$\langle \psi_3 | \psi_3 \rangle = \langle \psi_2 - S\psi_1 | \psi_2 - S\psi_1 \rangle$$

= $\langle \psi_2 | \psi_2 \rangle - 2S \langle \psi_1 | \psi_2 \rangle + S^2 \langle \psi_1 | \psi_1 \rangle$
= $1 - 2S \cdot S + S^2$
= $1 - S^2$

so ψ_3 is only normalized for the boring case of S = 0 (which means that ψ_1 and ψ_2 were orthogonal to begin with since no change to ψ_2 is required to generate ψ_3).

NAME: ____