1.	Which of the following phenomena could be	physics and			
	did not require a quantum hypothesis in	n order to	make theory	agree v	vith
	experiment?				

(a) Blackbody spectra

(e) Gravity

(b) Diffraction of light

- (f) (b) and (e)
- (c) Low-temperature heat capacity in perfect crystals
- (g) (a), (b), and (d)
- (d) The photoelectric effect
- (h) None of the above
- 2. If a normalized wave packet Ψ is given as $\Psi(x, y, z, t) = \sum_{n=1}^{\infty} c_n \psi_n(x, y, z) e^{-iE_n t/\hbar}$, what is the probability that an experiment will cause the system to collapse to the specific stationary state i?
- (a) Quantum mechanics does not allow you to know this probability
- (e) $|c_j|^2$

(b) One

(f) c_i

(c) $\langle \psi_i | H | \psi_i \rangle$

(g) (b) and (d)

(d) c_i^*

- (h) Only Schrödinger's cat knows
- 3. Which of the following statements about the de Broglie wavelength λ are *true*?
- (a) $\lambda = h/p$

- (e) A particle that has zero velocity has an infinite de Broglie wavelength
- (b) λ decreases as mass increases if (f) velocity is constant
 - (f) All of the above
- (c) λ increases as momentum increases
- (g) (a), (b) and (e) (h) (c) and (d)
- (d) λ is a constant, like Planck's (h) constant
- 4. Which of the below equations can be false for an arbitrary pair of orthonormal functions f and g?
- (a) $< |f|^2 > < |g|^2 > = 1$

(e) $f^*g - g^*f = 0$

(b) $\langle f | H | g \rangle = 0$

(f) (a) and (c)

(c) $\langle f | g \rangle = 0$

(g) (b), (d) and (e)

(d) fg = 0

(h) All of the above

5	Which	of the l	helow	expectation	values are	or may	he non.	zero?

(a`	$< \sin x \mid x \mid \cos x >$	(e)	$\langle f \mid g \rangle - \langle g \mid f \rangle^*$

- (b) $\langle \sin^2 x \mid x \mid \cos^2 x \rangle$ (f) $\langle \mu_{mn} \rangle$ for a forbidden transition
- (c) $\langle f \mid [A,B] \mid g \rangle$ where A and B (g) (a), (d) and (e) commute
- (d) $<\Psi_m \mid H \mid \Psi_n >$ where Ψ_m and Ψ_n (h) (b), (c), and (f) are non-degenerate stationary states
- 6. Which of the following did Bohr assume in order to derive a model consistent with the photoemission spectra of one-electron atoms?
- (a) The electron is a delocalized wave (e) The angular momentum of the electron is quantized
- (b) The ionization potential is equal to (f) (a) and (b) the work function
- (c) The one-electron atom is like a (g) (b) and (d) particle in a box
- (d) The Coulomb potential is quantized (h) None of the above
- 7. Which of the following statements about a well behaved wave function is *true*?
- (a) It must be continuous (e) Its square modulus has units of probability density
- (b) It may take on complex values (f) It must be an eigenfunction of the momentum operator
- (c) It must be quadratically integrable (g) (d) and (f)
- (d) It must be equal to its complex (h) (a), (b), (c), and (e) conjugate

include

- 8. Which of the following statements are *false* about the free particle?
- (a) Its Schrödinger equation is (e) Valid wave functions $\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} E\right)\Psi(x) = 0$ $\Psi(x) = Ae^{ikx} + Be^{-ikx}$ $k = \frac{\sqrt{2mE}}{\sqrt{2mE}}$
 - $\Psi(x) = Ae^{ikx} + Be^{-ikx}$ where $k = \frac{\sqrt{2mE}}{\hbar}$ Valid wave functions include
- (b) It may be regarded as having a (f) wave function that is the superposition of a left-moving particle and a right-moving particle
- $\Psi(x) = N \cos kx$ where N is a normalization constant and k is defined in (e) above
- (c) Its energy levels are all non- (g) negative
- All of the above
- (d) Its energy levels are quantized
- None of the above
- 9. Given a particle of mass m in a box of length L having the wave function $\Psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$, what is the energy of the level corresponding to n = 4?

(h)

- (a) Since this wave function is not an (e) eigenfunction of the Hamiltonian the question cannot be answered
- (e) $8\hbar^2 / mL^2$

(b) $\langle \Psi | p_x^2 | \Psi \rangle$

- (f) (c) and (d)
- (c) 16 times the energy of the ground (g) state
- (g) (b) and (e)

(d) $\frac{8\pi^2\hbar^2}{mL^2}$

- (h) None of the above
- 10. On which of the below functions does the parity operator Π act in the fashion $\Pi[f(x)] = (-1)f(x)$?
- (a) *x*

(e) Any eigenfunction of the Hamiltonian

(b) x^3

(f) (b) and (d)

(c) e^{ix}

(g) (a), (b), and (d)

(d) $\sin x$

(h) (b), (d), and (e)

Short-answer (20 points)

Prove that, given a pair of normalized but *not* orthogonal functions ψ_1 and ψ_2 , the function $\psi_3 = \psi_2 - S\psi_1$ is orthogonal to ψ_1 if S is the overlap integral of ψ_1 and ψ_2 . Is ψ_3 normalized? (Use the back of the page if necessary).

We evaluate

$$\langle \psi_1 | \psi_3 \rangle = \langle \psi_1 | \psi_2 - S \psi_1 \rangle$$

$$= \langle \psi_1 | \psi_2 \rangle - S \langle \psi_1 | \psi_1 \rangle$$

$$= S - S \cdot 1$$

$$= 0$$

which proves the orthogonality (we use normalization of ψ_1 in going from line 2 to 3).

With respect to normalization, we evaluate

$$\langle \psi_3 | \psi_3 \rangle = \langle \psi_2 - S\psi_1 | \psi_2 - S\psi_1 \rangle$$

$$= \langle \psi_2 | \psi_2 \rangle - 2S \langle \psi_1 | \psi_2 \rangle + S^2 \langle \psi_1 | \psi_1 \rangle$$

$$= 1 - 2S \cdot S + S^2$$

$$= 1 - S^2$$

so ψ_3 is only normalized for the boring case of S=0 (which means that ψ_1 and ψ_2 were orthogonal to begin with since no change to ψ_2 is required to generate ψ_3).

NAME: _____