1.	C 1		order to make theory agree with						
(a)	Blackbody spectra	(e)	Friction						
(b)	Diffraction of light	(f)	(a), (c), and (d)						
(c)	Low-temperature heat capacity in perfect crystals	(g)	(a), (b), and (d)						
(d)	The photoelectric effect	(h)	All of the above						
2.	Which of the following did Bohr assume in order to derive a model consistent with the photoemission spectrum of the hydrogen atom?								
(a)	The electron orbits the nucleus like a planet does a sun	(e)	The ionization potential is equal to the work function						
(b)	The angular momentum of the electron is quantized	(f)	(a) and (b)						
(c)	The one-electron atom is like a particle in a box	(g)	(b) and (d)						
(d)	The Coulomb potential is quantized	(h)	None of the above						
3.	Which of the following statements about the de Broglie wavelength λ are <i>true</i> ?								
(a)	λ decreases as mass increases if velocity is constant	(e)	A particle that has zero velocity has an infinite de Broglie wavelength						
(b)	$\lambda = h / p$	(f)	All of the above						
(c)	λ decreases as momentum increases	(g)	(a), (b) and (e)						
(d)	λ increases as kinetic energy decreases	(h)	(c) and (d)						
4.	Which of the following statements about a well behaved wave function is <i>false</i> ?								
(a)	It must be continuous	(e)	Its square modulus has units of probability density						
(b)	It may take on complex values	(f)	It must be an eigenfunction of the momentum operator						
(c)	It must be quadratically integrable	(g)	(d) and (f)						
(d)	It must be equal to its complex conjugate	(h)	(a), (b), (c), and (e)						

NAME: _____

5.	Which of the below	equations	will be	true	for a	ny arbitrary	pair of	orthonorn	nal
	functions f and g ?								

(a)
$$< |f|^2 > < |g|^2 > = 1$$

(e)
$$f^*g - g^*f = 0$$

(b)
$$\langle f | H | g \rangle = 0$$

(c)
$$< f | g > = 0$$

(d)
$$fg = 0$$

6. Which of the below expectation values are zero?

(a)
$$\langle \sin x \mid x \mid \cos x \rangle$$

(e)
$$\langle f | g \rangle - \langle g | f \rangle$$

(b) $\langle \sin^2 x \mid x \mid \cos^2 x \rangle$

- (f) $\langle \mu_{mn} \rangle$ for a forbidden transition
- (c) $\langle f \mid [A,B] \mid g \rangle$ where A and B (g)
- (b), (d) and (f)
- (d) $< \Psi \mid H \mid \Psi > \text{ where } \Psi \text{ is a}$ (h) stationary state
 - (h) (b), (c), and (f)
- 7. If a normalized wave packet Ψ is given as $\Psi(x, y, z, t) = \sum_{n=1}^{\infty} c_n \psi_n(x, y, z) e^{-iE_n t/\hbar}$, what is the probability that an experiment will cause the system to collapse to the specific stationary state j?
- (a) Quantum mechanics does not allow (e) c_j you to know this probability
- (b) $\langle \psi_j | H | \psi_j \rangle$

(f)
$$c_i^*$$

(c) One

(g) (b) and (d)

(d) $|c_i|^2$

(h) Only Schrödinger's cat knows

- 8. Which of the following statements are *false* about the free particle?
- Schrödinger equation is (e) (a) $\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} - E\right)\Psi(x) = 0$
- Valid wave functions include $\Psi(x) = Ae^{ikx} + Be^{-ikx}$ where $k = \frac{\sqrt{2mE}}{\hbar}$
- (b) It may be regarded as having a (f) function wave that superposition of a left-moving particle and a right-moving particle

Valid wave functions include $\Psi(x) = N \cos kx$ where N is a normalization constant and k is defined in (e) above

- Its energy levels are all negative (c)
- All of the above
- (d) Its energy levels are not quantized
- None of the above
- 9. Given a particle of mass m in a box of length L having the wave function $\Psi(x) = \sqrt{\frac{2}{I}} \sin\left(\frac{n\pi x}{I}\right)$, what is the energy of the level corresponding to n = 4?

(g)

(h)

- Since this wave function is not an (a) eigenfunction of the Hamiltonian the question cannot be answered
- (e)
- 8 times the energy of the ground (f) (b)
 - (c) and (d)

 $<\Psi \mid p_x^2 \mid \Psi >$ $8\hbar^2 / mL^2$ (c)

(g) (b) and (e)

(d)

- None of the above (h)
- 10. On which of the below functions does the parity operator Π act in the fashion $\Pi[f(x)] = (1)f(x)$?
- (a) \boldsymbol{x}

Any eigenfunction (e) the Hamiltonian

 x^2 (b)

(f) (b) and (d)

 e^{ix} (c)

(g) (a), (b), and (d)

(d) $\cos x$

(b), (d), and (e) (h)

Short-answer (20 points)

Prove that, given a pair of normalized but *not* orthogonal functions ψ_1 and ψ_2 , the function $\psi_3 = \psi_2 - S\psi_1$ is orthogonal to ψ_1 if S is the overlap integral of ψ_1 and ψ_2 . Is ψ_3 normalized? (Use the back of the page if necessary).

We evaluate

$$\langle \psi_1 | \psi_3 \rangle = \langle \psi_1 | \psi_2 - S \psi_1 \rangle$$
$$= \langle \psi_1 | \psi_2 \rangle - S \langle \psi_1 | \psi_1 \rangle$$
$$= S - S \bullet 1$$
$$= 0$$

which proves the orthogonality (we use normalization of ψ_1 in going from line 2 to 3).

With respect to normalization, we evaluate

$$\langle \psi_3 | \psi_3 \rangle = \langle \psi_2 - S\psi_1 | \psi_2 - S\psi_1 \rangle$$

$$= \langle \psi_2 | \psi_2 \rangle - 2S \langle \psi_1 | \psi_2 \rangle + S^2 \langle \psi_1 | \psi_1 \rangle$$

$$= 1 - 2S \cdot S + S^2$$

$$= 1 - S^2$$

so ψ_3 is only normalized for the boring case of S=0 (which means that ψ_1 and ψ_2 were orthogonal to begin with since no change to ψ_2 is required to generate ψ_3).

NAME: _____