1.	What is the eigenvalue of L_z for Ψ if the eigenvalue of L^2 for Ψ is $25\hbar^2$ and the
	eigenvalue of L_r for Ψ is $-4\hbar$?

(a)	The Heisenberg uncertainty principle dictates that Ψ cannot be an eigenfunction for L_z	(e)	± 3ħ
(b)	$16\hbar^2$	(f)	0
(c)	$4i\hbar^2$	(g)	π
(d)	±4 <i>ħ</i>	(h)	None of the above

2. For a spin-free hydrogenic wave function, which of the below relationships between quantum numbers is/are always true?

(a)	$n > l > m_l$	(e)	$n = l + m_l$
(b)	$n = l > m_l$	(f)	(b) and (c)
(c)	$n > l + m_l$	(g)	(b) and (e)
(d)	$n > l \ge m_l$	(h)	None of the above

3. What is the ground-state ionization potential for a one-electron atom having atomic number Z?

 Z^2 a.u. (a) (e) 1 a.u. The negative of the energy of the (f) The energy required to infinitely (b) electron in the 1s orbital separate the nucleus and electron $(1/2)Z^2$ a.u. (b), and (d) (c) (g) $2Z^2$ a.u. (b), (c), and (f) (d) (h)

4.	Which of the following statements is functions corresponding to the same h		
(a)	The ground state energy is zero, i.e., the bottom of the potential	(e)	The wave functions are not eigenfunctions of the parity operator
(b)	The number of nodes is equal to $n+1$, where n is the energy level	(f)	The selection rule for spectroscopic transitions is $n \rightarrow n \pm 2$
(c)	$_n = _n = _n$	(g)	(c), (e), and (f)
(d)	The wave functions have zero amplitude beyond the classical turning points	(h)	All of the above
5.	An electron of spin β is in a 5f orthogonal numbers (n, l, m_l, m_s) might describe s		-
(a)	(5, 4, 4, -1/2)	(e)	(5, 3, 2, -1/2)
(b)	(5, 2, 2, -1/2)	(f)	(c) and (e)
(c)	(5, 3, 0, -1/2)	(g)	(b), (c), (d) and (e)
(d)	(5, 3, 0, –7/2)	(h)	None of the above
6.	For the diatomic molecule CD, wher mass 2, what is the reduced mass?	e C has	s atomic mass 12 and D has atomic
(a)	7 / 12	(e)	10
(b)	12 / 7	(f)	It depends on the vibrational state
(c)	1/7	(g)	Cannot be determined from information given
(d)	2/7	(h)	None of the above

	eigenvalues and eigenfunctions is/are	true?	
(a)	$L_{\perp} = -(L_{-})^{*}$	(e)	$[L_x, L_y] = 2\hbar L_z$
(b)	$\langle L^2 \rangle = \langle L_z \rangle^2$ whenever $m_l = l$	(f)	$\langle Y_{l,0} T Y_{l,0} \rangle > \langle Y_{l',0} T Y_{l',0} \rangle$ if $l < l'$
(c)	For each value of l there are $2l$ possible values of m_l	(g)	(b) and (f)
(d)	The $real$ spherical harmonics are not all eigenfunctions of L_z	(h)	All of the above
8.	Which of the following wave function	ns has a	degeneracy of 2?
(a)	Particle in a box, level $n = 8$	(e)	Spin-free hydrogenic wave function, $n = 4$
(b)	Rigid rotator, $l = 4$	(f)	Relativistic free electron at rest
(c)	Quantum mechanical harmonic oscillator, level $n = 25$	(g)	(b) and (f)
(d)	Spin-free hydrogenic wave function, $n = 6$, $l = 1$	(h)	(a) through (f) are all singly degenerate
9.	For a diatomic rigid rotator having re	educed	mass 3 and bond length 2 a.u., which
of the following statements is/are true?			
(a)	The ground-state energy is 2B	(e)	The moment of intertia is 6 a.u.
(b)	The energy separation between the first and second excited states is	(f)	(a) and (b)
	(1/6) a.u.		
(c)	The rotational constant B is $(1/2)$	(g)	(e) and (f)
	a.u.		
(d)	Transition from the ground state to the state $J = 1$ is forbidden	(h)	None of the above

Which of the following statements about angular momentum operators and their

7.

- 10. Which of the below statements about electron spin is/are *false*?
- (a) The spin quantum number comes (e) from including relativity in the electronic Schrödinger equation

Spin-orbit coupling is proportional to the 4th power of the atomic number

- (b) Spin couples with orbital angular momentum according to $\mathbf{J} = \mathbf{L} \mathbf{S}$
- (a) and (c)
- (c) For a single electron, the only (g) eigenvalues of S_7 are $\pm (1/2)\hbar$
- (a), (c), and (d)
- (d) Stern and Gerlach discovered (h) electron spin by studying the magnetic moments of Ag atoms
- All of the above

Short answer. Show that by proper choice of a, the function e^{-ar^2} is an eigenfunction of the operator

$$\left[\frac{d^2}{dr^2} - qr^2\right]$$

where q is a constant. What is the name of the general class of functions represented by e^{-ar^2} ? How many nodes does this function have over r?

To show that e^{-ar^2} is an eigenfunction with proper choice of a we require

$$\left[\frac{d^2}{dr^2} - qr^2 \right] e^{-ar^2} = ze^{-ar^2}$$

Evaluating the l.h.s. we have

$$\left[\frac{d^2}{dr^2} - qr^2\right]e^{-ar^2} = -2ae^{-ar^2} + 4a^2r^2e^{-ar^2} - qr^2e^{-ar^2}$$
$$= -\left[2a + \left(q - 4a^2\right)r^2\right]e^{-ar^2}$$

and for the prefactor on the r.h.s. to be a constant (so as to satisfy the eigenvalue condition) it must be true that a is $\sqrt{q}/2$ in which case the eigenvalue will be -2a, which is simply $-\sqrt{q}$.

The general class of functions here are "gaussian" functions. A gaussian has no nodes over r.