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Solved Homework 
 
If an electron has a de Broglie wavelength of 1 Å (0.1 nm), then we can compute its 
momentum as 
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The kinetic energy of an electron having this momentum is 
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The energy of an electron subjected to one volt of accelerating potential is 1 eV. The 
conversion from eV to J is 1 eV = 1.602 x 10−19 J. The kinetic energy of the electron is 
thus 150.4 eV. So, an accelerating potential of roughly 150 V is required. 
 
The Wave Function for a Material System 
 
 Erwin Schrödinger, in 1926, proposed a way to meld the many quantum 
observations up to that point with a wavelike description of matter. In particular, he 
started from the classical wave equation (shown here for a single dimension) 
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where Ψ is a wave function which has an amplitude for any specification of x (position) 
and t (time), and c is the velocity of the wave (wavelength times frequency). A general 
solution to this equation is 
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where C is an arbitrary multiplicative constant, i is the square root of negative one (a base 
for the complex numbers), λ is the wavelength and ν is the frequency. To verify, note that 
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and 
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and c = λν. 
 
 Schrödinger decided to use the de Broglie wavelength for λ and to relate the 
frequency to the Planck energy. That is, he looked for a differential equation having the 
solution 
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where p is the momentum and E is the energy. For notational simplicity, from now on we 
will take the arbitrary constant C as one. 
 
 If we consider differentiating eq. 4-5 once with respect to time we have 
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or 
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The total energy E at a given time may be expressed as a sum of kinetic and potential 
energy, both of which depend only on x and not on t. Thus, we have 
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where p is the momentum, m is the mass, and V is the potential energy, which may be 
thought of as an outside influence on the system being described by the wave function Ψ. 
 
 Note that the idea here is to have Ψ be a function that contains information about 
the system contained within it. That is, we would like things like momentum and energy 
to be themselves determinable from the wave function. Let us consider how we might 
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determine the momentum from our wave function eq. 4-5. If we differentiate once with 
respect to x we have 
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We may write this in what is known as "operator" formalism as 
 

 
  

!

!x
" x, t( ) =

ip

h
" x, t( )  (4-10) 

 
or 
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which is to say that the operator that can be applied to the wave function in order to 
determine the momentum is to differentiate once with respect to x and then multiply by h-
bar over i. In this case, it is straightforward to show that the square of the momentum 
(needed for the kinetic energy) can be derived from operating twice with the momentum 
operator, i.e., 
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If we include this result in equation 4-8 we have 
 

 
  

!
h

i

"# x,t( )

"t
= !

h
2

2m

"2

"x2
+ V x( )

$ 

% & 

' 

( ) 
# x,t( )  (4-13) 

 
This is the one-dimensional, time-dependent Schrödinger equation. 
 
 To generalize the Schrödinger equation to multiple dimensions (e.g., three), one 
replaces the partial second derivative operator with the more general Laplacian operator. 
In the usual 3 cartesian dimensions, the Laplacian, called "del-squared", is 
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So, the general form of the time-dependent Schrödinger equation in 3 dimensions is 
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Memorize this equation. Really. Memorize it. 
 
 As a note of historical interest, Schrödinger derived his eponymous equation 
while vacationing in a mountain cabin with a female companion other than his wife. The 
identity of the woman has never been determined and remains a favorite subject of 
speculation by scientific historians (some of whom wonder if he got the idea from her...) 
Schrödinger and his wife, Annemarie, had what might be called an “open” marriage and 
were well known as bons vivants in Berlin (she was fond of various foreign 
ambassadors). Schrödinger was not burdened with modesty, having once said “I have 
never slept with a woman who did not afterwards wish to live with me forever”. These 
biographical details somehow never seem to make it into standard quantum chemistry 
textbooks. 
 
 
The Time-independent Schrödinger Equation 
 
 The operator which returns the energy E is called the Hamiltonian operator, and it 
is written as H. Thus, a more shorthand way to write eq. 4-15 is 
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 Let us now consider whether there may be simple forms for Ψ that permit the 
time variable to be separated from the position variables, i.e., 
 
 ! x, y, z,t( ) = " x, y, z( )# t( )  (4-17) 
 
If we employ the form on the r.h.s. of eq. 4-17 in eq. 4-16, we have 
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We may rearrange this to 
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Note that the l.h.s. of eq. 4-19 depends only on t while the r.h.s. depends only on the 
position coordinates. For the equality to hold, then, neither side can vary as a function of 
its variables, i.e., the two sides must equal the same constant. 
 
 If we solve the differential equation implied by setting the r.h.s. of eq. 4-19 equal 
to a constant we have 
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or 
 
 H! = C!  (4-21) 
 
Note, however, that this equation is in the form of an operator equation. By operating on 
the wave function with the Hamiltonian, we obtain the wave function back multiplied by 
a constant. The Hamiltonian is the operator that returns the energy, so C is then E. That is 
 
 H! = E!  (4-22) 
 
This is the time-independent Schrödinger equation. It too should be memorized. Note 
that, in terms of nomenclature, this is a case where we say that ψ is an “eigenfunction” of 
H and E is an “eigenvalue”. 
 
 Let us return now to the l.h.s. of eq. 4-19, which must also be equal to E. That is 
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A simple solution to this first-order differential equation is 
 
   ! t( ) = e"iEt / h  (4-24) 
 
So, a general form for an acceptable wavefunction can be written 
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So, What Is a Wave Function? 
 
 Discussion of wave functions seems terribly abstract, even if the mathematics are 
clear. What is the physical meaning of the wave function? Put fairly simply, the wave 
function is a probability map. That is, since waves have amplitudes, we may state that 
where our wave function’s spatial amplitude (the part depending on x, y, and z) is large, 
there is a good chance of finding our system there if we look for it. Conversely, if the 
wave function has small amplitude at a certain position, we are unlikely to find it there. 
The key point to bear in mind is that our system is spread out in some continuous fashion 
until we look for it. Because of wave-particle duality, if we look for a particle with an 
experiment that detects particles, we will find it in that form. But, the likelihood of 
finding it in any particular place at a particular time is dictated by the wave function. 
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 Now, the wave function can be complex valued, but the probability of finding a 
particle in some arbitrary volume of space at a specific time t is a real number between 
zero and one. Thus, the wave function itself does not have units of probability density, 
but rather its square modulus, Ψ*Ψ (also written |Ψ|2) does. Recall that for a complex 
number c = a + bi, where a and b are real numbers, the complex conjugate c* is given by 
c* = a – bi, so that c*c = a2 + b2, which is a real number. 
 
 This relationship between the square modulus of the wave function and the 
probability density imposes a constraint on the arbitrary multiplicative constant that has 
been showing up here and there in some of our differential equations. In particular, the 
probability of finding our system if we search all of space must be one. That is 
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A wave function that satisfies eq. 4-26 is said to be "normalized". Note that it is trivial to 
construct a normalized wave function from one that is not normalized. One simply 
creates a new wave function that is A−(1/2) times the old wave function, where A is the 
value of the square modulus of the old wave function integrated over all space. Such 
prefactors designed to ensure normalization are called normalization constants. 
 
 Now, consider the average value of some property that depends on the position of 
the system in space. In quantum mechanics, we call such average values "expectation 
values" and indicate them by surrounding “<” and “>” symbols. To compute them is 
straightforward:  one integrates over all spatial coordinates the value of the property at 
each position times the probability that the system will ever be at that position 
(determined from the square modulus of the wave function). So, if one would like to 
know the average of the product of the x and y coordinates, xy, one would compute this 
using 
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 Note that x and y may be thought of as multiplicative operators. Their operation 
seems rather trivial, as they simply multiply the wave function by the variable. However, 
it is helpful to take an operator viewpoint because there are other properties, like 
momentum, that quantum mechanically involve differential operators (see above). When 
we seek expectation values of such properties, we must evaluate the integral resulting 
from the operator acting on the wave function. Thus, the average value of the system's 
momentum in the x direction (see eq. 4-11 for the operator) is computed from 
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Remember that the partial derivative of Ψ will give ipΨ/  

! 

h  (assuming Ψ is a momentum 
eigenfunction, see eq. 4-10), where p is now a number, so the net result will indeed be an 
average of p times the square modulus just as it is for a multiplicative operator. 
 
 The association of a wave function with a probability density imposes certain 
requirements on Ψ. These are: 
 
1.  Ψ must be quadratically integrable. That is, the integral of |Ψ|2 over all space must be 
a finite number (so tht it can be normalized). 
 
2.  Ψ must be single valued (otherwise the probability density at the same position in 
space could take on two or more values, which would not correspond to reality). 
 
3.  Ψ must be continuous (it is not physically reasonable for the probability density to 
change in a discontinuous fashion over an infinitesimally small distance in space). 
 
 
Collapse of the Wave Function 
 
 For a particular system, there may be many solutions to the time-independent 
Schrödinger equation. Consider the hydrogen atom, for example. There are an infinite 
number of allowed orbits in the Bohr model (since n can be any whole number), each 
having different energy and a different associated wave function. A wave function that 
would satisfy the time-dependent Schrödinger equation is 
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where the {c} are arbitrary constants (possibly depending on time) and the {ψ} are the 
various so-called “stationary” (i.e., unchanging in time) spatial wave functions satisfying 
the time-independent Schrödinger equation. (You might try proving to yourself that the Ψ 
of eq. 4-29 really does satisfy eq. 4-15). 
 
 This suggests that the time-dependent wave function is really a “wave packet”, 
that is, it is composed of a linear combination of products of various stationary-state 
wave functions with the time-dependent exponential. One also says that the system exists 
as a “superposition” of states. However, at the moment that the system is sampled by 
some experimental probe, it must take on a single state characterized by a single value of 
the observable. That is, it must have only a single energy, a single momentum, etc. 
Exactly what the values are is dictated by the stationary-state wave function, but it would 
not correspond to physical reality if the observable properties were not single valued. 
 
 This effect of sampling is sometimes referred to as “collapsing” the wave 
function. The most famous and provocative thought experiment illustrating some of the 
seeming paradoxes of quantum mechanics is the so-called Schrödinger's cat experiment. 
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Imagine that a cat is placed in a box with a sealed vial of poison gas. Next to the vial is a 
single atom of a radioactive element. When that element decays, its ejected beta particle 
will be detected by a Geiger counter that is attached to a hammer that will smash the vial, 
killing the cat. 
 
 We seal the box so that we cannot know what is happening inside. Note that the 
time required for a single atom of a radioactive element to decay is unknowable; we 
know the time it takes on average for half of a huge number of atoms to decay very 
accurately, but the time for one atom is completely random. So, with the box closed, the 
question at any moment in time may be asked, “Is the cat dead or alive?” For those who 
believe in some objective reality to the Universe, the answer is certainly one or the other. 
They realize that they do not know which answer is correct, but they will insist that there 
is a definite answer.  
 
 In quantum mechanics, on the other hand, the cat is neither alive nor dead. It 
exists as a superposition of those two states. Until you open the box and collapse the 
wave function by observation, it chooses neither the alive option nor the dead one. 
 
 This raises all sorts of fascinating philosophical questions. Can the cat not 
collapse its own wave function? In its box, it knows whether it is alive or dead, but 
outside of it, we see it as a superposition of states. Is “consciousness” the ability to 
collapse a wave function? When the wave function does collapse, could it be that it 
undergoes all possible collapses, each one generating a new, distinct universe (this is 
called the “many-worlds hypothesis” of quantum mechanics)? In that case, our lives are 
simply particular world-lines following one collapse event to the next. 
 
Homework 
 
To be solved in class: 
 
Let the probability that a variable x has a value between –x and x be given by 
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P x( ) = Ne"ax
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where a is a positive constant (this is a so-called “normal” probability distribution). Show 
that N is equal to 

! 

a /"  when P(x) is normalized. Sketch the appearance of P(x) as a 
function of x. Where do the points of inflection occur? For the normalized function, what 
is <x>? What is <x2>? Why does <x2> ≠ <x>? Note that recourse to integral tables will 
probably be helpful for this problem. 
 
To be turned in for possible grading Jan. 27: 
 
Which of the following functions are eigenfunctions of the operator d2/dx2, and what are 
their corresponding eigenvalues if they are? (a) ae–3x + be–3ix, (b) sin2x, (c) e–x, (d) 
cos(ax), (e) sinx + cosx. 


