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Solved Homework (Homework for grading is also due today) 
 
We are told that the probability of a random variable taking on a value between −x and x 
is 
 
 P x( ) = Ne!ax

2

 
 
Such a function is called a "gaussian" function, incidentally, and we will see this function 
many, many times during this course. Since we want P to be normalized, we must have 
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in which case we demonstrate that N must be 

! 

a /"  to normalize the function (the 
solution to the integral comes from looking it up in a table). 
 
A sketch for a = 0.3, just as an example. 
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The points of inflection occur where the second derivative is equal to zero. 
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setting the r.h.s. equal to zero requires 
 
 0 = 2ax

2
!1( )  

 
so that 
 
 x = ±

1

2a
 

 
For my graph above, where a = 0.3, that is x = ±1.29. (Note that these points define one 
standard deviation for a random variable having “normal” distribution.) 
 
Now, to compute the mean value of x, we must solve 
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while one could go through the math to determine the value of this integral, it is simpler 
to employ a bit of common sense. From the shape of the probability function, the 
probability of getting any value x is exactly equal to the probability of getting −x. In such 
a case, the average value of x will necessarily be zero. (Later in the course, we will see 
that parity arguments can also be used to come to this conclusion without explicitly 
evaluating the integral.) 
 
The mean value of x2, on the other hand, is computed from 
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Integral tables provide 
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In our case, n = 1, the square roots cancel one another, and we are left with simply <x2> = 
(2a)−1. In probability, <x2> is called σ2 and we indeed see that the square root is one 
standard deviation, consistent with our work thus far. 
 
Finally, with respect to the question why is <x2> not equal to <x>2, that is fairly obvious. 
The former expectation value measures distance from the mean without respect to 
direction (which is to say, deviation to either left or right is weighted positive by virtue of 
squaring), while the latter is simply the square of the mean, not the deviation from it. In 
statistics, the difference between the two is referred to as the “dispersion” of the data. 
 
 
Necessary Mathematical Tools 
 
 Complex numbers.  Wave functions and operators can take on complex values, 
even though expectation values, i.e., the results of physical measurements, are always 
real numbers. Every complex number c can be represented as 
 
 c = a + bi  (5-1) 
 
where a and b are real numbers and i is the square root of −1 (the “unit” for the so-called 
imaginary part of complex numbers). We refer to the “complex conjugate” of c, which is 
written c*, as 
 
 c* = a ! bi  (5-2) 
 
The “square modulus” of the complex number c is 
 
 c* c = c

2
= a + bi( ) a ! bi( ) = a2 + b2  (5-3) 

 
Note that one way to view complex numbers is as vectors in a 2-dimensional cartesian 
coordinate system. The x axis represents the real component of c (written Re[c]) and the y 
axis the imaginary component of c (written Im[c]). In that case, it becomes clear that the 
square modulus of c is simply the square of the length of the corresponding vector in the 
complex plane. This is illustrated below. 
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 Vectors of complex numbers.  Imagine that we have a vector whose elements are 
complex numbers. Dirac notation in quantum mechanics provides a shorthand connection 
between vectors and matrix algebra. We refer to a column vector of complex numbers as 
a “ket”, which is written as | τ > and defined as 
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 (5-4) 

 
The term in parentheses is written like a vector specification in an n-dimensional 
coordinate system (n may be infinite) and the term in brackets is a matrix of n rows and 1 
column (also called a column vector). 
 
 We may define the analog of the square modulus for such a column vector. In 
general, the square of the length of a vector may be computed as the product of the 
transpose of the vector with itself. The transpose of a column vector is defined as the row 
vector having the same elements (in order) as the column vector. We might write 
 
 

  

! 

˜ " # c1 c2 c3 L[ ]  (5-5) 
 
The transpose definition is true in reverse as well (i.e., the column vector is the transpose 
of the row vector; in general, the transpose of a matrix with an arbitrary number of rows 
and columns is defined to be the matrix formed by converting every i,j’th element of the 
original matrix to a j,i’th element of a new matrix). 
 
 The rules of matrix multiplication define that when an m x n matrix (where m 
defines the number of rows and n the number of columns) multiplies an n x l matrix (n 
must be the same for both matrices!), then the result is an m x l matrix. So, for a row 
vector (1 row, n columns) multiplying its transpose column vector (n rows, 1 column), 
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one obtains a 1 x 1 matrix, which is to say a single number, and this defines the square 
modulus of the vector. Note that as discussed so far, we would have 
 
 

  
˜ ! ! = c1

2
+ c2

2
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2
+L (5-6) 

 
This is fine if all the values c are real numbers, but if they are complex numbers, the 
square of a complex number is still generally complex. To get a real number, we need to 
use square moduli instead of simple squares. So, for arbitrary kets, we define the “bra”, 
written < τ |, as the complex-conjugate transpose, or adjoint of the ket, i.e., 
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in which case the square modulus of tau is well defined as 
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*
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When < τ | τ > = 1, the vector τ is said to be “normalized”. Note that the general notation 
for the adjoint of an arbitrary matrix is A†. 
 
 In general, we use this notation because it is convenient for wave functions. 
Recall that a generic solution to the time-dependent Schrödinger equation is 
 

 
  

! x, y, z,t( ) = cn"n
n=1

#

$ x, y, z( )e%iEnt / h  (5-9) 

 
It is much quicker to write this as | Ψ >, where it is implicit in the notation that each i’th 
element of the vector is the i’th element of the sum. To indicate why this is particularly 
useful, we need to digress for a bit to discuss the properties of quantum mechanical 
operators. 
 
 Hermitian Operators.  Recall that an operator A acts on a wave function to deliver 
the value of an observable a according to 
 
 A! = a!  (5-10) 
 
where Ψ is called an eigenfunction of A and a is its associated eigenvalue. Let us now 
multiply both sides of eq. 5-10 from the left by Ψ* and integrate to obtain 
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 (5-11) 
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where dr is the volume element of a space of arbitrary dimensions. Since a is just a 
number (indeed, a real number, since expectation values of observables must be real 
numbers) it comes outside the integral and normalization of the wave function provides 
the final result. Indeed, this operationally is how one computes a (see last lecture’s 
section on expectation values). 
 
 Now, let us consider the special case where it is also true that 
 
 A

*
! = a!  (5-12) 

 
An operator satisfying both eqs. 5-10 and 5-12 is said to be Hermitian. It is trivial to 
show, then, that the following holds true for a Hermitian operator 
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 (5-13) 

 
Let us consider the case where Ψ is the sum of two arbitrary functions 
 
 ! = !1 + !2  (5-14) 
 
If we plug this expression into the central equality in eq. 5-13, we have 
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which may be expanded to 
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 (5-16) 

 
From the central equality of eq. 5-13, we may eliminate the first and last terms on both 
sides as they are equal to one another, leaving us with 
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We can now do exactly the same thing, but with a different definition of Ψ, namely 
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 ! = !1 + i!2  (5-18) 
 
In this case, we will have 
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If we follow the same approach used in eq. 5-16, we have 
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where it is quite critical to be careful in keeping track of complex conjugate sign 
changes! Again, we can eliminate the first and last terms on each side based on the 
central equality of eq. 5-13. If we also divide all remaining terms by i we are left with 
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 Now, if we add eq. 5-17 to eq. 5-21, we lose two terms by cancellation and, after 
eliminating a common factor of 2, we are left with 
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Finally, we know from A being Hermitian that A*Ψ2 = AΨ2, so we may substitute the 
l.h.s. to arrive at the “turnover rule”, namely 
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The turnover rule for Hermitian operators is tremendously useful in various 
manipulations of integral quantities in quantum mechanics. 
 
Eigenvalues and Eigenvectors of Hermitian Operators 
 
 Let us apply the turnover rule to a single eigenfunction Ψ of A. Note that 
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 For a to be equal to a*, a must be real. This is no surprise, of course, as we 
defined Hermitian operators to have real numbers as eigenvalues, but it is important to 
emphasize again that this is exactly what we want for quantum mechanical operators, that 
they produce only real expectation values. Hence, we have a fundamental postulate that 
all quantum mechanical observables have associated with them a Hermitian operator. 
 
 Let us consider another property of Hermitian operators. If our operator A has two 
different eigenfunctions with associated eigenvalues according to 
 
 A!i = ai!i and A!j = aj!j  (5-24) 
 
Now, consider multiplication on the left side of the first equality by 
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"j
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integration, that is 
 
 !j

*
A!i"#

#

$ dr = ai !j
*
!i"#

#

$ dr  (5-25) 

 
And, by the turnover rule 
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So, if we subtract eq. 5-25 from eq. 5-26, we have 
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 aj ! ai( ) "j
*
"i!#

#

$ dr = 0  (5-27) 

 
For this equality to be true, either the two eigenvalues a must be equal to one another 
(that is, the expectation values are "degenerate"), or, the integral must be zero. When the 
integral is zero, we say that the two functions are "orthogonal". If they are also 
normalized (remember that it is trivial to normalize a wave function), we say the 
functions are "orthonormal" and we write 
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where δ is the "Kronecker delta", which is defined as 
 

 !ij =
1, i = j

0, i " j

# 
$ 
% 

 (5-29) 

 
 Note that if eq. 5-27 is satisfied because the eigenvalues are degenerate, we can 
still construct wave functions using Ψi and Ψj that will be eigenfunctions of A and yet be 
orthogonal (this is the homework for next class). Thus, we can state as a proven principle 
that the eigenfunctions of a Hermitian operator are orthonormal. This property will be 
very useful for simplifying integrals later on. 
 
 We may take advantage of this immediately in a notational sense. Consider the 
case where a wave function is expressed as a linear combination of orthonormal 
functions. That is, 
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In that case, we would have 
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Notice that the final result is exactly the same as for multiplication of a column vector by 
its adjoint row vector when the elements of the vector are the coefficients of the wave 
function. This is the key connection between our wave function notation thus far and the 
matrix notation we discussed at the beginning. Thus, in Dirac notation, we simplify our 
notation by defining 
 
 !

*
!dr

"#

#

$ = ! !  (5-32) 

 
In addition, when there is an operator involved, we may consider the matter from the 
context of matrix algebra. Our final integral is just a number, so we still want the result of 
the operator acting on the column vector to be a column vector times a scalar (the scalar 
is the eigenvalue, see eq. 5-11). This implies that the operator must be a n x n matrix, 
since a n x n matrix multiplies a n x 1 column vector to give a n x 1 column vector. This 
idea of a matrix representation of an operator will prove useful much later in the class, 
but for now is simply a point of general interest. More practically for the moment, let us 
define the Dirac notation 
 
 !

*
A!dr

"#

#

$ = ! A!  (5-33) 

 
While we’ve written eqs. 5-32 and 5-33 with a bra that is the specific adjoint of the ket, 
that need not generally be the case. For instance, we could write eq. 5-28 as 
 
 !j !i = " ij  (5-34) 
 
It is critical to remember always that Dirac notation represents integrals, but those 
integrals are just numbers (zero, one, π8, 0.31456..., whatever). 
 
Commutators 
 
 Notice that when two operators are applied in sequence, the order of the sequence 
may matter. For instance, if we consider the operators 
 

 A ! x and B !
"

"x
 (5-35) 

 
and their operation on the function x3, we find 
 

 
A B x

3( )[ ] = A 3x
2[ ]

= 3x3
 (5-36) 

 
and 
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B A x

3( )[ ] = A x
4[ ]

= 4x3
 (5-37) 

 
These results are not equal. 
 
 We define the “commutator” of two operators as 
 
 A,B[ ] = AB ! BA  (5-38) 
 
The commutator is itself an operator, of course. Indeed, from eqs. 5-36 and 5-37, we have 
 
 A,B[ ]x3 = !x3  (5-39) 
 
or, [A,B] = −1 (a rather simple operator, which changes the sign of its operand—it is 
trivial to prove that this is true for any function, not just x3). From eq. 5-38, it is obvious 
that [B,A] = −[A,B]. When [A,B] = 0, the operators A and B are said to “commute”. 
 
 Commuting operators have several important properties—here is a critical 
executive summary: 
 
If Hermitian operators A and B commute, then  
 
 !i B!j = bi"ij  (5-40) 
 
where the elements of {Ψ} are a necessarily existing set of orthonormal eigenfunctions 
that are common to both A and B, and the elements of {b} are the associated eigenvalues 
of B (the full set of eigenvalues is called the “spectrum” of B). 
 
Homework 
 
To be solved in class: 
 
Given eqs. 5-10 and 5-12 where a is a real number, prove the equalities in eq. 5-13. 
 
To be turned in for possible grading Feb. 3: 
 
Consider a pair of degenerate, normalized eigenfunctions, φ1 and φ2, of a Hermitian 
operator A with common eigenvalue a. Show that two new functions defined as u1 = φ1 
and u2 = φ2 – Sφ1 are orthogonal, provided that S is properly chosen (i.e., determine what 
value of S is required to enforce orthogonality). Show that u1 and u2 remain degenerate 
with common eigenvalue a. 


