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Solved Homework 
 

We are given that A is a Hermitian operator such that Aφ1 = aφ1, Aφ2 = bφ2, Aφ3 = 
bφ3, and Aφ4 = cφ4, a ≠ b ≠ c, and Z is some other operator for which [A,Z] = 0. We may 
then state whether the following integrals are definitely zero, or may be nonzero 
 
(a) < φ1 | φ4 > Equals zero, because non-degenerate eigenfunctions of a 

Hermitian operator are orthogonal. 
(b) < φ2 | φ4 > Equals zero, because non-degenerate eigenfunctions of a 

Hermitian operator are orthogonal. 
(c) < φ2 | φ3 > May or may not be zero. Degenerate eigenfunctions are not 

necessarily orthogonal, even though orthogonal functions 
having identical eigenvalues can be constructed from linear 
combinations of them. 

(d) < φ3 | φ4 > Equals zero, because non-degenerate eigenfunctions of a 
Hermitian operator are orthogonal. 

(e) < φ1 | A | φ3 > Equals zero. < φ1 | A | φ3 > = < φ1 | bφ3 > = b< φ1 | φ3 > and we 
know < φ1 | φ3 > = 0 because non-degenerate eigenfunctions of 
a Hermitian operator are orthogonal. 

(f) < φ2 | A | φ3 > May or may not be zero. < φ2 | A | φ3 > = < φ2 | bφ3 > = 
b< φ2 | φ3 > and we know from (c) above that this overlap 
integral need not be zero. 

(g) < φ1 | Z | φ4 > Equals zero. If the commutator of two operators is zero, then 
they share common eigenfunctions and we were told that the 
functions φ belong to this set. Thus, < φ1 | Z | φ4 > = 
< φ1 | dφ4 > = d< φ1 | φ4 > where d is an eigenvalue of Z and 
we know from (a) above that this overlap integral is zero. 

(h) < φ2 | Z | φ3 > May or may not be zero. Continuing from our above logic, 
< φ2 | Z | φ3 > = < φ2 | eφ3 > = e< φ2 | φ3 > and we know from 
(c) above that this overlap integral need not be zero. 

(i) < φ2 + φ3 | Z | φ2 – φ3 > May or may not be zero. This one is a bit tricky. If 
we expand the integral, we get < φ2 | Z | φ2 > – < φ2 | Z | φ3 > + 
< φ3 | Z | φ2 > – < φ3 | Z | φ3 >. The first question is, just 
because φ2 and φ3 are degenerate for the Hamiltonian, are they 
necessarily degenerate for the operator Z? The answer is, yes. 
We can prove this by noting that, by the turnover rule, 
< φ2 | Z | φ3 > = < Zφ2 | φ3 > = f< φ2 | φ3 > where f is the 
appropriate eigenvalue for Z. But, we already showed in (h) 
above that < φ2 | Z | φ3 > = e< φ2 | φ3 >, so e must be equal to f. 
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So, if we pull all of the eigenvalues out from our sum of 4 
integrals we have e< φ2 | φ2 > – e< φ2 | φ3 > + e< φ3 | φ2 > – 
e< φ3 | φ3 >. Assuming that φ2 and φ3 are normalized, the first 
and last terms cancel as e – e. However, since φ2 and φ3 are 
degenerate, they are not necessarily orthogonal. Let us say that 
the overlap integral < φ2 | φ3 > = c. Then < φ3 | φ2 > = 
< φ2 | φ3 >* = c*. For a complex number, c ≠ c* unless c is 
simply a real number. So, the second and third terms of the 
sum do not necessarily cancel and we cannot say that the 
integral is necessarily zero. 

(j) < φ2 + φ3 | A | φ2 – φ3 > May or may not be zero. Same answer as (i) but 
with A and its eigenvalue b in place of Z and its eigenvalue e. 

(k) < φ2 + φ3 | φ2 – φ3 >  May or may not be zero. Same answer as (i) above, 
but no need to pull out eigenvalues from the sum of the 4 
intermediate integrals. 

 
 
Free Particle Wave Function 
 
 The time-independent Schrödinger equation in one dimension is 
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For a free particle, the potential energy V is everywhere zero. This leads to a simplified 
equation 
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This has a slightly simpler looking form if we select a constant 
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in which case we may write eq. 7-2 as 
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This is one of the simplest possible differential equations. It has solutions of the form 
 
 ! x( ) = Aeikx + Be"ikx  (7-5) 
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(you should be able to verify this readily). A and B are arbitrary constants for the general 
case of eq. 7-4. If we wish to ensure normalization, there are some rather tricky details 
that arise, but we will ignore them for this particular system as they don't really matter. 
 
 Let's focus on the important details of this wave function. First, there is no 
quantization. From eq. 7-3, it is apparent that all positive values of E are allowed 
(positive because the particle has only kinetic energy, and kinetic energy is bounded from 
below by zero). 
 
 Some of you may not be familiar with the function eix. If we use its series 
expansion, we obtain 
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Thus, if we were to take A = B in eq. 7-5, we would have 
 
 ! x( ) = N coskx  (7-7) 
 
and if we were to take A = −B in eq. 7-5, we would have 
 
 

! 

" x( ) = N sinkx  (7-8) 
 
where N is some arbitrary normalization constant. 
 
 So, a free particle has a wave function that can be represented as either a sine or 
cosine function, which is to say, it is highly delocalized. The wavelength of the wave 
function decreases with higher energy and with greater mass (recall the definition of k)—
results we expect. 
 
 Because the free particle is not quantized, we sometimes say it is ‘in the 
continuum”, meaning that there is a continuous range of energies available to it. The free 
particle wave function is readily generalized to three dimensions with no change in 
qualitative interpretation. 
 
The Particle in a Box 
 
 What if instead of a particle being free over all space, it is free only within a box 
of length L, outside of which the potential energy is infinite, i.e., the particle is totally 
confined? We then have (in one dimension) 
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Since the particle cannot exist in regions of infinite potential energy, we can be certain 
that 
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and, from the requirement that the wave function be continuous, that further mandates 
that 
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Within the length of the box, however, the particle looks like a typical free particle, 
which suggests that it should have a sine or cosine wave function. Given our choice of 
x = 0 as one wall of the box, we cannot use the cosine function (since cos(0) = 1, not 0), 
so we will need a function having the form of eq. 7-8. Moreover, to ensure that Ψ = 0 at 
position L, we can only use arguments of the sine function that are guaranteed to be 
integral multiples of π at position L. That is, if we require sin(kL) = 0, we require 
 
 k =

n!

L
 (7-12) 

 
where n is an integer. So, besides eq. 7-10 (which specifies the wave function to be 
identically zero outside the box) we have 
 

 ! x( ) = Csin
n"x

L

# 
$ 

% 
&  (7-13) 

 
where C is an integration constant. Since we can now insist on normalization, we enforce 
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so that it is apparent that C = (2/L)1/2. Thus, within the box, the particle in a box has the 
wave function 
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If we plug this wave function into the time-independent Schrödinger equation, we have 
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Taking the derivative on the l.h.s. provides 
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or, after canceling Ψ from both sides 
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The energy levels of the particle in a box are thus quantized, since n is an integer (we 
may as well say a positive integer, since we are dealing with n2). 
 
 There are many other important qualitative features of this wave function that are 
worth taking note of: 
 
1) The lowest possible energy is not zero, but rather h2/(8mL2) for n = 1. This energy 
is called zero-point energy. The reason the energy cannot be zero is that if n = 0, we see 
from eqs. 7-10 and 7-15 that Ψ = 0 everywhere. That is an allowed wave function, but it 
corresponds to no particle at all (it obviously integrates to zero over all space) which is 
hardly very interesting... Note that zero-point energy is an intrinsically quantum 
mechanical phenomenon. A classical particle can certainly be “at rest” (have no energy) 
in a box, but not a quantum particle. Note that if the QM particle were to be at rest, we 
would simultaneously know its position and its momentum, but the uncertainly principle 
tells us that we can never know that! 
 
2) As the box length L becomes infinite, the spacing between levels becomes zero 
and we recover the continuum. 
 
3) As the mass becomes infinite, the spacing between levels becomes zero and we 
recover the continuum, which is certainly well known as the classical limit. 
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Representing Wave Functions 
 
 When we work with wave functions, there are various convenient ways to express 
them graphically. A typical illustration is shown below. 
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Note that the lowest energy wave function (n = 1) has no nodes. The next higher energy 
wave function has one node, etc. 
 

Remember that the probability of finding a particle at a given position is 
Ψ(x)*Ψ(x). Noting the convention that the zeroes of the individual wave functions are 
where they cross their respective energy lines (it is as though each is drawn with its own 
right-hand ordinate have the zero at the energy level), it is straightforward to sketch 
Ψ(x)*Ψ(x). In this case, Ψ is real, not complex, so we simply square the function. Thus, it 
is zero at the nodes (the walls, and any internal nodes), and positive everywhere else, 
with maximum probability at the positions of maximum amplitude in Ψ in either the 
positive or negative directions. 
 
 There are some interesting observations from this analysis. First, the lowest 
energy wave function has a non-zero probability at every position inside the box, but 
higher energies have zero probabilities at nodal positions. In addition, the lowest energy 
wave function has the lowest probability of being found near the walls (stare at the graph 
until you see this). As the energy increases, the probability of being found near the wall 
increases. 
 
 It is a worthwhile exercise to check whether our wave functions are orthogonal 
(we know that, as eigenfunctions of a Hermitian operator, they should be). The generic 
overlap between any two particle-in-a-box wave functions is 
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(the integral solution is available in any good integral table). Thus, the wave functions are 
indeed orthonormal. 
 
 Now, let us consider the expectation value of the momentum for a particle-in-a-
box wave function. We determine this as 
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Irrespective of the quantum number, the expectation value of the momentum is zero. 
Intuitively, if we had thought about it, we probably would have realized that this was the 
necessary result. Any time we sample the system, the probability that we will find a 
particle moving from left to right with some momentum is equal, by symmetry, to the 
probability that we will find it moving from right to left! This is the perfect example of a 
superposition of states. 
 

Of course, if we evaluated p2 we would expect a different, non-zero result. In this 
case, however, we need not do the integration because again we already know the 
answer. The entire energy for any particle-in-a-box wave function is kinetic energy, and 
the kinetic energy is simply p2/2m. So, < p2 > is simply 2m times the value from eq. 7-18, 
i.e., n2h2/4L2. 
 
Homework 
 
To be solved in class: 
 
(a)  Evaluate <x> and <x2> for the particle in a box as a function of quantum number n. 
 
(b)  Why does only one of the answers in part (a) depend on n? 
 
(c)  Why isn’t <x2> equal to <x>2? 
 
(d)  Determine <H> and <H2> and compare the latter with <H>2. Contrast the result with 

your answer to part (c). 
 
Hints: 
 
 sin! sin" =

1

2
cos ! # "( ) # cos ! + "( )[ ]  
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In the absence of a nice integral table you will need to recall how to integrate by parts, 
namely 
 
 udv! = uv " vdu!  
 
To be turned in for possible grading Feb. 3: 
 
For the particle in a box of length L, what is the probability of finding the particle in the 
intervals 0.45L to 0.55L for the following levels: 
 
(a) n = 1 
 
(b) n = 2 
 
(c) n = 7,503 
 
(d) The Bohr correspondence principle states that quantum mechanics should reduce to 

classical mechanics for very large quantum numbers. Is your final answer consistent 
with classical mechanics? Explain the direction of deviations from the classical 
answer, if any, for cases (a), (b), and (c). 

 


