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Solved Homework (Homework for grading is also due today) 
 
Evaluate <x> and <x2> for a particle-in-a-box wave function. These expectation values 
are, generically 
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Noting that the complex conjugate in this case is simply the sine function (since the 
function is real) and using the trigonometric identity given as a hint in the assignment, 
these simplify to 
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Additional simplification leads to 
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The remaining integrals can be solved by integration by parts (or by reference to a good 
integral table). To demonstrate the former, let us consider the first case 
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Integration by parts uses the relationship 
 
 udv! = uv " vdu!  
 
If we choose 
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we have 
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The final result, then, is that 
 
 x =

L

2
 

 
Happily, this is a completely intuitive result. The average position is the center of the 
box! If we look at the plotted wave functions from last lecture, this should be obvious, as 
all have square moduli that are symmetric about the box center. 
 
 To solve the integral remaining in <x2> requires two successive integrations by 
parts. The calculus is straightforward, if tedious, and is not shown here. An integral table 
can also be used to find 
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 If we plug in the appropriate values for a and evaluate over the integration limits 0 to L 
we have the remaining contribution to <x2> and our final result is 
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The classical result is the first term on the r.h.s., which makes sense (the probability is 
uniform across the entire box (that is, P(x) = 1/L) for the classical case, but not the 
quantum case—when n approaches infinity, the rapid oscillation of the wave function 
again makes the probability essentially uniform and, as it should be, we see that the 
classical limit is recovered). The appearance of n in this expectation value reflects the 
highly non-uniform probability distribution of the lower-energy particle-in-a-box 
wavefunctions, which have reduced expectation values for <x2>, since those wave 
functions have low probabilities near the walls and higher probabilities near the center. 
This effect is larger as L gets larger, since more and more of the distances far from the 
center are disadvantaged compared to distances near the center. [Note that these results 
would be slightly more intuitive if we had transformed our coordinate system by L/2, so 
that the center of the box was zero, but the physics doesn’t change.] 
 
 Note that <x>2 ≠ <x2> because the eigenfunctions of the Hamiltonian are not 
eigenfunctions of the position operator. Put differently (but equivalently) [H,x] ≠ 0. 
Delocalization of the wave function makes fairly obvious that the wave function cannot 
be an eigenfunction of the position operator. [For the mathematically inclined, the Dirac 
delta function δ(x) is the eigenfunction of the position operator. That function has an 
infinite first derivative, meaning that the expectation value of the momentum operator 
would be infinite, as required by the Heisenberg uncertainty principle!] 
 
 It is trivial to compute <H>2 and <H2>. We already know that the particle-in-a-
box wave functions are eigenfunctions  of the Hamiltonian having energy levels 
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When this eigenvalue is pulled out of <H>, all that is left is an integral of |Ψ|2, and by 
normalization this is one. So, the expectation value of H is the energy above. Applying H 
twice in a row just gives the square of this value, again pulled out front of a normalized 
integral, so we have <H>2 = <H2>. This is the requirement when the wave function is an 
eigenfunction of the operator, as is the case here. 
 
Parity 
 
 Often in quantum mechanics we face a fairly simple question with respect to a 
given integral:  Is it zero or can it be non-zero? It can be surprisingly easy to answer this 
question by taking advantage of a property known as parity. If it is the case that a 
function of a given variable changes sign when the variable changes sign but does not 
change in magnitude, i.e., 
 
 ! f x( ) = f !x( )  (8-1) 
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we say the function has “odd” parity. If, on the other hand, it neither changes in 
magnitude nor in sign, i.e., 
 
 f x( ) = f !x( )  (8-2) 
 
we say that it has “even” parity. [Note that f(x) = 0 is a rather odd beast that has both even 
and odd parity, but it is so boring a function that we won’t worry about it any longer.] 
 
 Parity is a useful quality because any integral that equally spans either side of zero 
may be non-zero if the function being integrated has even parity, and it will be zero if the 
function being integrated has odd parity. If these statements are not intuitively obvious, 
quick graphical examples should make things clear. 
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From inspection of eq. 8-1 it is clear that an odd function must pass through the origin, 
and that the areas on the left and right sides of the origin will exactly cancel one another. 
For an even function (not shown above), the area on one side will exactly equal (not 
cancel) the area on the other side, so the integral may be non-zero. A simple example of a 
trivial even function is f(x) = C where C is a constant (i.e., no dependence on x). In that 
case, the area defined by the integral from −a to a is simply 2aC, which is not zero except 
in the boring case of C = 0. 
 
 Note that an arbitrary function does not have to have any parity at all. For 
instance, f(x) = ex is neither even nor odd. We can actually regard parity as having an 
associated operator, call it Π, where the operator replaces every coordinate variable with 
its negative. That is, 
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 !f x, y,z( ) = f "x,"y," z( )  (8-3) 
 
From generalizing eqs. 8-1 and 8-2, it should be clear that odd and even functions are 
eigenfunctions of the parity operator having eigenvalues −1 and 1, respectively. [These 
are also the only possible eigenvalues if the function f is required to be differentiable at 
x=0.] 
 
 Now, let us consider whether the parity operator commutes with the Hamiltonian 
for the particle in a box. Put differently, does [H,Π] = 0? For the particle in a box, the 
Hamiltonian is simply the kinetic energy operator. If we evaluate the commutator for an 
arbitrary function (of one variable, for simplicity) we have 
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The kinetic energy operator and the parity operator commute. Since the eigenfunction of 
one Hermitian operator is also an eigenfunction for all Hermitian operators with which 
the first one commutes, it is required that the particle-in-a-box wave functions be either 
even or odd (the only two possibilities for Π). We’ll look at the wave functions in a 
moment to decide when they are even or odd, but we need to do one more thing with 
parity first. 
 
 Parity has a multiplication rule associated with it, and it is the same rule that is 
true for arithmetic addition. The product of either two odd functions or two even 
functions is always an even function, just as the sum of two even numbers or two odd 
numbers is always even. Conversely, the product of an even function with an odd 
function is always odd, just as the sum of an even number and an odd number is always 
odd. Staring at some graphs will help you see these product relationships, if they aren’t 
immediately clear. 
 
 These rules allow us to state, for instance, that |Ψ|2 is typically non-zero for 
eigenfunctions of the parity operator because |Ψ|2 is an integral over the product of either 
two even or two odd functions, and thus the product must be even, and the integral of an 
even function is typically non-zero. 
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Spectroscopic Transitions 
 
 Later in the course, we will hopefully have a chance to prove the following 
statement. Until then, just accept it as fact. A quantum mechanical system cannot be 
induced to go from state m to state n if it is true that 
 
 !m

*
r( )er!n r( )dr"#

#
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where e is the charge on an electron (just a constant) and r is the coordinate operator (x in 
one dimension, r in 3 dimensions). Because the operator er has units of charge times 
distance, it is called the “electric dipole moment operator” µ . The probability of a 
spectroscopic transition is proportional to the absolute value of < Ψm | µ  | Ψn >, and this 
value is called the transition dipole moment, also written <µmn>. 
 
 If the transition dipole moment is zero, we say that the transition is "forbidden". If 
it is non-zero, we say that the transition is "allowed". For allowed transitions between 
states m and n, increases in energy require absorption of a photon of frequency ν and 
decreases in energy involve emission of a photon of frequency ν, where ν satisfies the 
Bohr condition 
 
 Em ! En = h"  (8-6) 
 
where h is Planck's constant. 
 
 Let us use parity to determine whether the transition dipole moment for two 
particle-in-a-box wave functions is zero. Note that the dipole moment operator is an 
eigenfunction of the parity operator, and it is an odd function (multiplying something by 
−x or by (−xi,−yj,−zk) results in the negative of multiplying by x or by (xi,yj,zk)). So, for 
the transition dipole moment integral to be non-zero, the product of the two particle-in-a-
box wave functions must be an odd function too. Thus, we need one odd particle-in-a-box 
wave function and one even one. Is that possible? 
 
 To answer that question, we first need to recast our particle-in-a-box wave 
functions into a form such that the transition dipole moment is integrated from −a to a. In 
this case, a will be L/2 where L is the length of the box. If we take our normalized 
particle-in-a-box wave function  
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and make the substitution x = x´ – L/2, we have 
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If we now use the trigonometric identity for the sine of a sum, we have 
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Notice the distinction in the functions depending on whether n is odd or even  
(arithmetically, in this case, not a reference to parity!). That is because the cosine and 
sine terms that are not dependent on x are equal to zero for odd and even values of n 
respectively, so one term in the sum disappears. In the other term, the non-x dependent 
trigonometric functions are either 1 or −1 depending on the precise value of n as 
indicated by the preceding powers of −1 in the final expression. 
 
 What about the parity of the two possible wave functions? From trigonometry we 
know that 
 

 
cos x( ) = cos !x( ) " even function

! sin x( ) = sin !x( ) " odd function
 (8-10) 

 
So, it is the case that when n is odd, our particle-in-a-box wave functions are of even 
parity, while when n is even, they are of odd parity. Thus, as noted above, transitions 
between levels will be allowed if and only if one level has an even quantum number and 
the other an odd one, since the product of the two wave functions will then have odd 
parity. 
 
Tunneling 
 
 One of the strangest and most fascinating phenomena allowed in the quantum 
mechanical world but not in the classical world is called quantum mechanical tunneling, 
or simply, tunneling. Imagine that you place a classical particle in a box. On one side of 
the box (let's say the left side) there is a barrier of infinite height. On the other side is a 
barrier of finite height and width (let's say it is square topped) beyond which the potential 
returns to zero forever. If we provide our classical particle with an amount of kinetic 
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energy that is less than the potential energy barrier height of the right side of the box, it 
will bounce around inside forever (assuming no energy loss to friction, collisional 
heating, etc.) and it will never, never escape. The quantum mechanical particle, on the 
other hand, given enough time will always find its way out. It is as though it "tunnels" 
through the barrier. 
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To construct a wave function that explains this, we need to piece together in a 
continuous, differentiable fashion, wave functions for the three different regions. The 
relevant Schrödinger equations are 
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All of these may be rearranged into the generic form 
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Recall that the general solution for eq. 8-12 is 
 
 ! x( ) = Aeikx + Be"ikx  (8-14) 
 
If we use A and B as the multiplicative constants for the box region, there will be an 
analogous F and G for the rightmost region (we reserve C and D for the barrier region 
and skip E to avoid confusion with the particle energy). The solution for the barrier 
region is slightly tricky insofar as k2 is a negative number (since V0 > E). Rather than 
work with an imaginary k, we can simply rewrite the differential equation as 
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where 
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The solution to eq. 8-15 is as straightforward as that for eq. 8-12. It is 
 
 ! x( ) = CeKx + De"Kx  (8-17) 
 
 Prior to doing any more work to determine the constants A to G, let us take a 
moment to evaluate the momentum operator over the two exponential components of the 
first and third wave functions. For the first component, we have 
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and for the second component 
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So, the momentum associated with the first term is always positive if A is non-zero and 
that with the second term is always negative if B is non-zero. We may view the two-term 
wave function, then, as a superposition of right-moving (positive momentum) and left-
moving (negative momentum) particles. 
 
 If tunneling occurs, that means that F must be non-zero. That is, right-moving 
particles are present in the open region. The intensity of a beam of such particles would 
be related to the ratio of |F|2 to |A|2. This ratio is called the "transmission coefficient" κ 
and is a measure of the efficiency of tunneling. Our goal is to compute κ. Moreover, 
since the likelihood of any particles coming back and tunneling into the box is effectively 
zero (since the free space to the right is infinite) we can be confident that G = 0 in the 
wave function for the open region. 
 
 For the two points at which the wave functions are stitched together, using G = 0 
and the requirement for a continuous, differentiable wave function provides the following 
boundary conditions (several e0 terms are not shown as they are simply one) 
 

 

A + B = C + D
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+ De
!Ka
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ik A ! B( ) = K C ! D( )

K Ce
Ka ! De!Ka( ) = ikFeika

 (8-20) 

 
These are 4 equations in 5 unknowns. To make the whole thing more tractable, we may 
assume that C is zero. To rationalize this, consider the wave function of eq. 8-17. As a 
particle enters a region whose potential energy exceeds its kinetic energy, do we expect 



  8-11 

the probability of being there to increase exponentially as we go further in (the C term) or 
to drop off exponentially as we go further in (the D term). Obviously the latter is the case. 
 
 With this final simplifying assumption, we can solve for κ (the tedious algebra is 
not shown). Our final result is 
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where Z is k/K or 
 

 Z =
V0 ! E

V0

 (8-22) 

 
 Note the key qualitative features in eq. 8-21. First, for κ to be zero (no possibility 
of escape by tunneling) either the width a, or the mass m, or the barrier height V0, must 
be infinity. For a given barrier height, tunneling increases for smaller widths, lighter 
masses, and smaller differences between E and V0. We may summarize these in a 
sensible way: 
 
1)  Tunneling is more efficient the narrower the barrier. 
 
2)  Tunneling is more efficient for lighter particles. 
 
3)  Tunneling is more efficient near the top of the barrier than further down. 
 
Note that real chemistry barriers tend to be thicker at the bottom than the top, so points 1 
and 3 often combine their effects. 
 
 Tunneling is intrinsically quantum mechanical, but it is an everyday phenomenon, 
as exotic as it may seem (exotic because, in the barrier region, the particle must, by 
conservation of energy, have negative kinetic energy (imaginary momentum?)) 
Tunneling is the mechanism by which certain radioactive nuclei emit α particles (the 
nuclear binding potential is always vastly greater than the α particle’s kinetic energy). 
Electron transfer in biological processes like photosynthesis involves electrons tunneling 
from one metal center to another. Finally, protons and hydrogen atoms are still light 
enough to tunnel effectively in many instances, and liver alcohol dehydrogenase (the 
enzyme responsible for detoxifying those who have overimbibed) achieves a part of its 
reactivity owing to tunneling of this light nucleus. 
 
Homework (n/a — Study for exam I — see below) 
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Some Sample Exam Questions: 
 
a. Which of the following statements about the de Broglie wavelength λ are true? 
 
(a) λ decreases as mass increases if 

velocity is constant 
(e) A particle that has zero velocity has 

an infinite de Broglie wavelength 
(b) λ = h / p (f) All of the above 
(c) λ decreases as momentum increases (g) (a), (b) and (e) 
(d) λ increases as kinetic energy 

decreases 
(h) (c) and (d) 

 
b. Which of the below equations can be false for an arbitrary, possibly complex, pair 

of orthonormal functions f and g? 
 
(a) < |f|2 >< |g|2 > = 1 (e) f*g – g*f = 0 
(b) < f | H | g > = 0 (f) (a) and (c) 
(c) < f | g > = 0 (g) (b), (d) and (e) 
(d) fg = 0 (h) All of the above 
 
c. Which of the below expectation values are zero? f and gare arbitrary, possibly 

complex, functions. 
 
(a) < sinx | x | cosx > (e) <f | g > – < g | f > 
(b) < sin2x | x | cos2x > (f) <µmn> for a forbidden transition 
(c) < f | [A,B] | g > where A and B 

commute 
(g) (b), (d) and (f) 

(d) < Ψ | H | Ψ > where Ψ is a 
stationary state 

(h) (b), (c), and (f) 

 
d. Given a particle of mass m in a box of length L having the wave function 
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2

L
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L
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& , what is the energy of the level corresponding to n = 8? 

 
(a) Since this wave function is not an 

eigenfunction of the Hamiltonian 
the question cannot be answered 

(e) 
  

16!2h2
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(b) 64 times the energy of the ground 
state 

(f) (c) and (d) 

(c) < Ψ | px2 | Ψ > (g) (b) and (d) 
(d) 8h2 /mL2 (h) None of the above 
 


