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Lecture 10, February 10, 2006 
 

 
Solved Homework 
 
 We are asked to find <x> and <x2> for the first two harmonic oscillator wave 
functions, which are 
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 So, for <x> we have  
 

 
x
n=0

= !0 x( ) x!0 x( )

x
n=1

= !1 x( ) x!1 x( )
 

 
Before we do any heavy lifting with the integrals, note that Ψ0 is an even function, Ψ1 is 
an odd function, and x is an odd function. So, we have integrals of either even x odd x 
even or odd x odd x odd. Either case results in an odd function, so the expectation value 
in both cases is zero. Remember that in our derivation x (or r) represents the displacement 
from the equilibrium bond length between the two balls. Thus, a value of zero implies the 
equilibrium distance (i.e., the bottom of the potential energy well). Since all harmonic 
oscillator wave functions are either even or odd, all of the wave functions have <x> = 0. 
That is, they are all symmetric about the equilibrium length, and the average of all of our 
experiments to measure bond length will be the equilibrium bond length irrespective of 
what vibrational state we measure. 
 
 As for <x2>, now life is not so easy, since parity says the integrals need not be 
zero. Let’s start with Ψ0. 
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An integral table provides 
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If we plug in the appropriate value of a we have 
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Let’s do a quick sanity check on this answer. It says that as the force constant k gets 
larger, the average of the squared displacement from the equilibrium bond length will get 
smaller. That makes sense:  stiffer spring, less displacement as it vibrates. It also says that 
as the reduced mass goes up, the average displacement will be smaller. That too makes 
intuitive sense. Kinetic energy goes up with mass, so in the same vibrational period we 
will have to slow down (and thus go less far) to maintain the same energy if the mass 
increases. 
 
 Now, what about the case for Ψ1? There we have 
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An integral table provides 
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If we plug in the appropriate value of a we have 
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 So, the average of the squared displacement is three times larger for n = 1 than for 
n = 0. We will look more closely at the wave functions themselves below, and this result 
will be consistent with the appearance of the probability densities. 
 
 Based on the above two results, you might be tempted to predict, in general, that 
for eigenstate n 
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And, you would be correct! Note that the average of the square displacement increases 
linearly with increasing n. 
 
Analysis of The Harmonic Oscillator Wave Functions 
 
 The QM harmonic oscillator wave functions are shown on the next page, as are 
their square moduli, which represent their probability distributions. There are several 
important things to note. We’ll discuss some of these in more detail below, but for now, 
let’s just list them (there is some overlap with the list from last lecture). 
 
1) The zeroth level wave function is not at the zero of energy. It’s height above the 

zero of energy (the bottom of the potential well) is called the zero-point energy, 
and is equal to (1/2)hν. 

 
2) The zeroth level wave function has no nodes, and each higher level wave function 

has one more node than the one below it. 
 
3) For all of the wave functions, the expectation value of the kinetic energy is 

exactly equal to the expectation value of the potential energy (this is not obvious 
from inspection, but is the subject of tomorrow’s homework). 

 
4) From (3), it follows that the average potential and kinetic energies each increase 

by (1/2)hν as we go from one level to the next. It seems obvious that the potential 
energy increases, since the wave function samples more distant regions of the 
potential, and we will look at the kinetic energy below. 
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5) The probability distributions of the wave functions penetrate the potential barrier. 
This is very much like what we saw with tunneling. It is possible to find bond 
lengths that correspond to the system having negative kinetic energy. [Note that 
this seems like a paradox only if you permit yourself to imagine that you can 
know the kinetic energy without measuring it. If you measure it, it will be 
positive, but then you won’t have been able to measure the bond length to an 
accuracy beyond that permitted by the uncertainty principle...] 

 
6) Although all of the energy levels have <x> = 0, only the probability amplitude of 

the ground state is peaked at x = 0 (indeed, there is a node there for all the levels 
with odd n!) For higher and higher levels, the maximum probabilities shift to the 
“walls” of the potential. The points −x and x where the potential is equal to the 
total energy are called the “classical turning points”. 

 
7) Spectroscopic transitions between harmonic oscillator energy levels are permitted 

only for changes to the level immediately above or immediately below, i.e., 
n → n ± 1. The energy of the photon required for this transition is E = hν where 
the frequency of the photon is exactly the same frequency as that of the harmonic 
oscillator (since the separation in energy levels of the harmonic oscillator is also 
hν). We’ll look at spectroscopy more below. 

 
Zero-Point Energy 
 
 An interesting aspect of zero point energy is that, for the same potential energy 
function (which is to say the same force constant), it depends on the reduced mass µ. 
Recall that the zero-point vibrational energy is 
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where A and B are the two atoms involved in the bond. So, let us consider the case of 
different isotopes. That is, atomic nuclei having the same number of protons (so they are 
the same elements) but a different number of neutrons (so they are different masses). 
Since the elements do not change, we do not really expect k to change as a function of 
isotope. It is the electrical force that holds a bond together, and that electrical force has no 
dependence on neutral neutrons in the atomic nuclei. However, the reduced mass will 
change. Consider, for example, A is a carbon atom (C, mass 12 amu) and B is either a 
hydrogen atom (H, mass 1 amu) or a deuterium atom (D, mass 2 amu). The reduced 
masses of the C–H and C–D systems are (12/13) and (24/14) respectively, i.e., they differ 
by about a factor of 2, with the C–D value being larger than the C–H value. Since ZPVE 
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depends inversely on the square root of the reduced mass, we expect it to be smaller for 
the C–D bond than for the C–H bond. 
 

Bond length

E

h!C–H/2
h!C–D/2

"EC–D
‡

"EC–H
‡

 
 
 Is there a chemical consequence to this difference? Indeed there is! Recall that we 
used a harmonic potential to approximate the real bonding potential. The real potential 
has a dissociation limit at large r that corresponds to breaking the bond. At that limit, we 
have two atoms as isolated particles—no bond between them, no oscillator, no zero-point 
energy (free particles can have zero energy). So, the energy required to break the bond is 
the difference in energy between the zeroth vibrational level and the dissociation energy. 
Since the zeroth level is (1/2)hν above the common well bottom, the C–D ground 
vibrational state is at lower energy than the C–H ground vibrational state, and it will 
require more energy to break the C–D bond than the C–H bond. This situation is exactly 
what one observes experimentally. At room temperature, a C–H bond is about 7 times 
more likely to be broken than an otherwise equivalent C–D bond challenged by the same 
abstracting reagent. 
 
 For tritium (T, mass 3 amu, a radioactive isotope of hydrogen), the difference in 
reduced mass with hydrogen is even larger, and the strength of the bond is quite large. It 
has been estimated that if all the hydrogen atoms in your body were to be replaced by 
tritium, you would die more quickly from your enzymes being unable to make and break 
bonds to T than from the massive radiation poisoning you would instantly begin to suffer! 
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Nodes and Kinetic Energy 
 
 Although the homework for today deals with QMHO kinetic energies, let us 
examine a completely general rule:  for substantially similar wave functions, the more 
nodes, the greater the average kinetic energy. A proof of this point is disarmingly simple. 
Consider for an arbitrary wave function Ψ 
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(we are working in one dimension, x, for simplicity in notation, but the proof is 
completely general). How shall we evaluate the integral we are left with? One approach 
is to integrate by parts. Let us take 
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in which case we have 
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If we plug this into eq. 10-2 we have 
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 So, what is the meaning of the integral of the square modulus of the derivative of 
the wave function? Well, let us remember what the derivative means. If the wave 
function is changing rapidly with x, the derivative will be large in magnitude. If it is 
changing slowly with x, the derivative will be small in magnitude. As we are working 
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with the square modulus, it does not matter here what the sign of the derivative is, or 
whether it is real or complex, all that matters is the magnitude. 
 
 It should be clear that as a wave function develops more nodes, its derivative will 
have larger amplitude over more space than for a wave function that has fewer nodes. It 
is perhaps simplest to see this by taking the absurd case. Imagine the wave function were 
to have nodes infinitely close to one another (a lot of nodes...). In that case, the function 
is dashing almost straight up and down crossing the axis at every position. Its slope (i.e., 
its first derivative) must be effectively infinite at every position, so it will have maximal 
kinetic energy. It should be simple to see that as the spacing between nodes increases 
because there are fewer of them, the integrated square modulus of the slope will decrease, 
and thus the kinetic energy decreases.  
 
 Note that this result is completely general. Everyone learns in freshman chemistry 
that, for a given principle quantum number, s orbitals are lower in energy than p orbitals 
which are lower than d orbitals, etc. This is actually not quite true, as we will see later, 
but what is true is that the first s orbital is lower in energy than the first p orbital is lower 
in energy than the first d orbital in part because s orbitals have no planar nodes, p orbitals 
have one planar node, d orbitals have two planar nodes, etc., and the kinetic energies of 
electrons in the orbitals with more nodes are higher (more positive, less favorable). We’ll 
get to a more rigorous discussion of atomic orbitals later in the class, but this is the quick 
and intuitive explanation. 
 
 
Spectroscopy of the QM Harmonic Oscillator—Infrared Spectroscopy 
 
 As a general rule for most bonds at room temperature, the separation between 
vibrational energy levels is such that a Boltzmann population of vibrational states (i.e., a 
thermal equilibrium of vibrational states) consists almost entirely of the zeroth vibrational 
level. 
 
 As noted above, the selection rule for allowed transitions in the QMHO is to 
allow only n → n ± 1. Thus, essentially the only allowed transition at room temperature is 
that from the ground state to the first excited state level. (We will not prove the selection 
rule; suffice it to say that it derives from some interesting mathematical properties of the 
Hermite polynomials.) 
 
 Typical chemical bonds, to the extent that they can be approximated as harmonic 
potentials, have force constants of a magnitude such that the frequency of light that is 
equal to the QMHO frequency (remember that absorption requires hνlight = ΔE0→1 = 
hνQMHO) is in the infrared region of the spectrum. 
 
 Infrared frequencies usually are not expressed in units of s−1, but rather in 
“wavenumbers”, which are abbreviated as cm−1. The relationship between the two is ω = 
ν/c where ω is the frequency in wavenumbers, ν is the frequency in s−1, and c is the 
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speed of light in cm s−1 (3.0 x 1010). In wavenumbers, the IR region of the spectrum runs 
from about 4000 to 400 cm−1. 
 
 Because different bonds have different force constants and different reduced 
masses, individual absorptions corresponding to vibrational excitations tend to be well 
dispersed in the IR range, and IR spectroscopy can be a very useful tool for assigning 
molecular functionality (as most students of organic chemistry have already learned). 
 
 Here, we will simply note that IR spectra are also useful in identifying isotopic 
substitution. As already pointed out above for the ZPVE, νQMHO is different for different 
isotopes in the same bond, and so νlight must also be different. The relationship predicted 
from quantum mechanics is exactly the one that is observed experimentally. For example, 
C−H bonds typically absorb IR radiation at about 3000 cm−1. Given that the reduced 
mass of the C−D bond is roughly half that of the C−H bond, we would expect the 
frequencies of absorption to differ by a factor of roughly 1.4 (the square root of two) with 
the C−D value being smaller, i.e., about 2150 cm−1. This is exactly where such 
absorptions are indeed seen. 
 
 When heavier atoms are involved, changes in isotopic mass have a much smaller 
effect on the reduced mass, but the resolution of a good IR spectrometer is usually on the 
order of 1 cm−1, so it is usually quite straightforward to identify isotope shifts in 
frequencies. These can be very useful in assigning structure when one can use synthesis 
to introduce isotopes into particular positions. 
 
Homework  
 
To be solved in class: 
 
 Evaluate the average kinetic energy for the 0th harmonic oscillator wave function 
(the ground state). Noting that the average potential energy is <kx2/2> = (k/2)<x2>, and 
that we just computed <x2> at the beginning of this lecture, show that for this state (and 
indeed, it turns out true for any state) the average kinetic energy is exactly equal to the 
average potential energy. 
 
To be turned in for possible grading Feb. 17: 
 
 HBr and DBr (H = 1H, D = 2H, and Br = 79Br) are observed to absorb infrared 
radiation at 2439 and 1750 cm–1, respectively. Answer the following questions: 
 
(a)  In the ground vibrational state, which has more average kinetic energy, HBr or DBr? 
 
(b)  In units of kg, what is the reduced mass of DBr? 
 
 (c)  In units of N m–1, what is the force constant for the HBr bond? Is it the same for the 
DBr bond? 
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 (d)  At what frequency would TBr be expected to absorb radiation (T = 3H)? 
 
(e)  In units of s–1, what is the vibrational frequency of HBr in the state with quantum 
number n = 5? 


