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Solved Homework 
 
 We are asked to find <T> for the first harmonic oscillator wave function 
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 So, for <T>n=0 we have  
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We need to evaluate the second derivative. It is 
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Thus, 
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We've already evaluated the two integrals in previous work. Using the appropriate 
formulae provides 
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Recall from our last homework that 
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The expectation value of the potential energy <V> is simply (k/2)<x2>, or 
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This completes the proof that <T> = <V> for the n = 0 state of the QMHO. It is similarly 
straightforward, if increasingly tedious, to prove this for the first excited state, and indeed 
for any state. 
 
Angular Momentum 
 
 Angular momentum is a vector quantity, defined as the cross product of the 
position vector and the momentum vector. In cartesian coordinates, it is most easily 
expressed as the determinant 
 

 L =

i j k

x y z

px py pz

 (11-1) 

 
where x, y, and z are the components of the position vector (i.e., the coefficients 
multiplying the unit vectors i, j, and k, respectively) and px, py, and pz are the 
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components of the momentum vector. A 3 x 3 determinant may be evaluated by Cramer's 
rule (no relation to your enthusiastic instructor, as far as I know...), which states that the 
determinant is equal to the sum of the three down-right wraparound multiplications minus 
the sum of the three up-right wraparound multiplications. That is 
 

 

i j k

x y z

px py pz

= ypz i + zpx j + xpyk ! ypxk ! zpyi ! xpzj

= ypz ! zpy( )i + zpx ! xpz( )j + xpy ! ypx( )k

 (11-2) 

 
Thus, the components of L, namely, Lx, Ly, and Lz, are the terms in parentheses preceding 
the corresponding unit vectors. In the absence of a torque on a system, angular 
momentum is a conserved quantity, just as linear momentum is conserved in the absence 
of a force on a system. 
 
 The magnitude of the angular momentum is (as for any vector quantity) |L|2 
(typically also written L2, since it is just a number). From eq. 11-2, that implies 
 
 L

2
= Lx

2
+ Ly

2
+ Lz

2  (11-3) 
 
In a quantum mechanical system, the discussion thus far continues to apply, except that 
the momentum components themselves are the operators 
 

 
  

pq = !ih
"

"q
 (11-4) 

 
where q is either x, y, or z. 
 
 Let us now consider the commutation properties for any two components of the 
angular momentum. We'll take Lx, and Ly as an example. For an arbitrary function f we 
have 
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So, the commutator is not zero, but instead involves the operator Lz. By symmetry of the 
operators, it should be clear that 
 

 

  

Lx ,Ly[ ] = ihLz
Ly,Lz[ ] = ihLx
Lz ,Lx[ ] = ihLy

 (11-6) 

 
So, from the uncertainty principle, we see that we can never know more than one 
component of the angular momentum to perfect accuracy. In three dimensions, this is 
equivalent to saying that we can know the angular momentum only to within a circle 
defining the base of a cone having height equal to the one component we can know. 
Below is an illustration of this point for the arbitrary case of saying we can know only the 
z component. 
 
 What about the total magnitude of the angular momentum? Can we know it in 
addition to any one component? To evaluate that, we need to compute the commutator of 
any one component with L2. This one we can do symbolically given our prior results 
 

 
L
2
,Lz[ ] = Lx

2
+ Ly

2
+ Lz

2
,Lz[ ]

= Lx
2
,Lz[ ] + Ly

2
,Lz[ ] + Lz

2
,Lz[ ]

 (11-7) 

 
To go further, it is helpful to prove a quick property of commutators of a product of two 
operators with another operator. Note that 
 
 AA,B[ ] = AAB ! BAA  (11-8) 
 



  11-5 

Lz

Lx

Ly

Bold vector is a classical angular momentum
vector, and we can find its components by
projection into appropriate planes. In quantum
mechanics, we can only know one component.
In this case, there are many other vectors (here
shown with dashed lines) having the same
value of Lz and they define the circular base of
a cone (appearing as an ellipse here only because
of our perspective).  

 
 
and that 
 

 A,B[ ]A + A A,B[ ] = ABA ! BAA + AAB ! ABA

= AAB ! BAA
 (11-9) 

 
Comparing eqs. 11-8 and 11-9 shows us how to continue with equation 11-7 
 

 

  

Lx
2
,Lz[ ] + Ly

2
,Lz[ ] + Lz

2
,Lz[ ] = Lx,Lz[ ]Lx + Lx Lx,Lz[ ] + Ly,Lz[ ]Ly

+ Ly Ly,Lz[ ] + Lz ,Lz[ ]Lz + Lz Lz ,Lz[ ]

= !ihLyLx ! ihLxLy + ihLxLy + ihLyLx

+ 0 • Lz + Lz • 0

= 0

 (11-10) 

 
Since the commutator is zero, we can simultaneously know both the total angular 
momentum, and a single component of the angular momentum, but that is all we can 
know precisely. 
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Eigenvalues of the Angular Momentum Operators 
 
 We can learn a remarkable amount about the angular momentum eigenvalues of a 
QM system with knowledge only of its commutation relationships, i.e., without knowing 
the eigenfunctions. To do this, we need to define two new operators, called raising and 
lowering operators and indicated by "+" and "–" subscripts, respectively. The definitions 
are 
 
 L+ = Lx + iLy and L! = Lx ! iLy  (11-11) 
 
 Let us say that we have an eigenfunction Ψ of Lz and L2 such that 
 
 

  
Lz! =mlh! and L

2
! = l l +1( )h2!  (11-12) 

 
We will see at the end why we chose those particular names/forms for the eigenvalues, 
but for now we will just accept them. Now consider the raising operator applied to the 
first part of eq. 11-12. We see 
 

 
  

L+Lz! = L+mlh!

=mlhL+!
 (11-13) 

 
Let us evaluate that equation in a somewhat different way 
 

 

  

L+Lz! = LzL+ + L+Lz " LzL+( )!

= LzL+ + L+,Lz[ ]( )!

= LzL+ + Lx + iLy ,Lz[ ]( )!
= LzL+ " ihLy " hLx( )!
= LzL+ " hL+( )!

 (11-14) 

 
Equating the results from eqs. 11-13 and 11-14 gives, after rearrangement 
 
 

  
LzL+! = ml +1( )hL+!  (11-15) 

 
So, evidently L+Ψ is an eigenfunction of Lz and its eigenvalue is one h-bar greater than 
the eigenvalue for Ψ itself. If we were to carry out the same operations with L−, we 
would find 
 
 

  
LzL!" = ml !1( )hL!"  (11-16) 

 
The reason for the naming of these operators should now be clear. The raising operator 
takes a given angular momentum eigenfunction to another one with the z component of 
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the angular momentum greater by h-bar, and the lowering operator takes it to another one 
with the z component of the angular momentum lower by one h-bar. 
 
 What about the eigenvalue for the total angular momentum:  is it affected by the 
application of the raising and lowering operators? Since the raising and lowering 
operators are defined in terms of Lx and Ly, and since these two operators both commute 
with L2, the raising and lowering operators must also commute with L2. Thus 
 

 

  

L
2
L±! = L±L

2!

= L±l l +1( )h2!

= l l +1( )h2L±!

 (11-17) 

 
So the raising and lowering operators have no effect on the eigenvalue of L2. If we 
picture in our mind the quantum mechanical notion of the angular momentum vector 
precessing around the circular base of the cone in the above figure with a fixed value for 
its z component, it is as though the raising and lowering operators move the fixed 
component up or down one h-bars worth, while the length of the vector remains the same, 
so a new circle, either smaller (if we stepped so that the angular momentum vector 
became closer to the z axis) or larger (if we stepped the other way), is traced out by the 
vector, although the total angular momentum has been conserved. 
 
 Now, consider the effect of applying the raising and lowering operators one after 
another in succession. 
 

 

  

L+L! = Lx + iLy( ) Lx ! iLy( )
= Lx

2 ! iLxLy + iLyLx + Ly
2

= Lx
2
+ Ly

2
+ Lz

2
! Lz

2( ) ! i Lx ,Ly[ ]
= Lx

2
+ Ly

2
+ Lz

2( ) ! Lz2 ! i ihLz( )

= L2 ! Lz
2 + hLz

 (11-18) 

 
In addition, note that the raising operator is the complex conjugate of the lowering 
operator. Thus, writing the product of the two is just another way of writing their square 
modulus. The expectation value of the square modulus of an operator must be non-
negative, so we can write 
 
 

  
! L+L" ! = ! L

2
" Lz

2
+ hLz ! # 0  (11-19) 

 
In this case, Ψ is an eigenfunction of all of the operators on the r.h.s. of the equality in eq. 
11-19, so we can quickly solve 
 



  11-8 

 

  

! L
2
" Lz

2
+ hLz ! = ! L

2
! " ! Lz

2
! + h ! Lz !

= l l +1( ) "ml
2 +ml[ ]h2 # 0

 (11-20) 

If we carry through the same manipulations in eqs. 11-18 through 11-20 for L−L+, we end 
up with 
 
   L!L+ = L

2
! Lz

2
! hLz  (11-21) 

 
and 
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 (11-22) 

 
 If we now add eq. 11-20 to eq. 11-22, we have 
 
 l l +1( ) !ml

2  (11-23) 
 
Thus, there are minimum and maximum values of the z component of the angular 
momentum given a finite total angular momentum (hardly surprising). Note, however, 
that the z component can never equal the total angular momentum. From the Heisenberg 
uncertainty principle, we could have guessed that it could not be the case that the z 
component was equal to the total (i.e., the angular momentum lay completely along the z 
axis) because then we would have known the x and y components had to be zero exactly, 
but we're not allowed to know them exactly and simultaneously. 
 
 However, there's a more interesting consequence to the limits imposed on ml. 
Since the raising operator applied to any eigenfunction increases its z component angular 
momentum by h-bar, there will arise a paradox for the wave function whose eigenvalue is 
already ml,max (whose square is the last to be less than or equal to l(l+1)). Consider the 
special case of eq. 11-15 
 
 

  
LzL+!max = ml,max +1( )hL+!max  (11-24) 

 
The only way in which this equation can be true (and we have already proven that it must 
be) while at the same time the eigenvalue cannot be greater than ml,max  h  is if the raising 
operator annihilates Ψmax. In that case, the equation will indeed hold true in a trivial sort 
of way:  Lz operating on the wave function identically equal to zero is equal to any scalar 
multiplying the null wave function:  both result in null. The same situation holds true for 
the lowering operator and the wave function having the minimal value of ml,min  h ; it is 
annihilated by L−. 
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 Let us return, then, to the expectation values of eq. 11-20 and 11-22, but for the 
special cases of Ψmax and Ψmin.  
 

 

  

! 

"max L#L+ "max = "max L# 0

= 0

= l l +1( ) #ml,max
2

#ml,max[ ]h2
 (11-25) 

 
and 
 

 

  

! 

"min L+L# "min = "min L+ 0

= 0

= l l +1( ) #ml,min
2 + ml,min[ ]h2

 (11-26) 

 
When we subtract eq. 11-26 from 11-25, we have 
 
 

! 

"ml,max
2

"ml,max + ml,min
2

"ml,min = 0 (11-27) 
 
The only physical solution to this equation is ml,min = −ml,max.  
 
 Finally, since the raising and lowering operators toggle through the 
eigenfunctions and eigenvalues in steps of h-bar, the eigenvalues of Lz must be either 
ml = 0, ±1  h , ±2  h , ..., ±ml,max  h , or it would also be possible that they be ml = ±(1/2)  h , 
±(3/2)  h , ±(5/2)  h , ..., ±ml,max  h . We will see later that only the whole integral series 
works for angular momentum. For now we will simply work with that series, and note 
that the commutation relationships allow the half-integral series, which will perhaps show 
up in some other operator. 
 
 From eq. 11-25 (or 11-26), we also see that the quantum number l is equal to 
ml,max (and we see now why we chose the form for the eigenvalue of L2 as l(l+1)  h

2). 
 
 
The Big Picture 
 
 So, without knowledge of the eigenfunctions themselves, we have established 
that: 
 
1) The total angular momentum is quantized. It takes on values of 

  
l l +1( )h  where l 

is an integer (a quantum number). 
 
2) For a given quantum number l, the z component of the total angular momentum 

can also be determined precisely; it too is quantized and it is limited to values of 
0, ±  h , ±2  h , ..., ±l  h  (choice of z is arbitrary, but typical; we could more generally 
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say "a single component" instead of "the z component"). We call the integer 
multiplying   h  the quantum number ml. 

 
3) We can never know the precise direction of a non-zero angular momentum vector, 

as that would violate the uncertainty principle. 
 
 
Homework  
 
To be solved in class: 
 
What are the eigenvalues of Lx

2 ? What are the eigenvalues of Ly
2 ? Finally, what are the 

eigenvalues of Lx
2
+ Ly

2 ? All 3 operators listed do indeed have associated eigenvalues but 
you may want to think carefully about what you can measure at one time without 
violating the uncertainty principle. 
 
To be turned in for possible grading Feb. 17: 
 
All of the angular momentum operators that we have discussed thus far are Hermitian. 
For an arbitrary function Φ having finite total angular momentum, what is required for it 
to be true that  
 
 

! 

"L+L– " = "L#L+ "  
 
where 

! 

L+L–  is the operator defined by sequential application of the lowering operator 
and then the raising operator, and vice versa? Note that an “arbitrary” function means that 
it need not be an eigenfunction of L2. If you don’t know where to start on this problem, 
which is certainly not trivial, take another look at eqs. 6-7 and 6-8 and their surrounding 
discussion and think about how you might be able to apply analogous reasoning to this 
problem. 
 
 


