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Solved Homework 
 
 We are allowed to know any one component of the total angular momentum to 
perfect accuracy. Although historically one nearly always speaks of the z component as 
being the one that is knowable (i.e., for which we can find eigenfunctions), this is a 
completely arbitrary labeling scheme. We might as easily name it x or y and the 
mathematics are identical. The Heisenberg uncertainty principle simply says that we 
cannot know more than one simultaneously. So, the eigenvalues of Lx

2  are the same as 
those of Ly

2  are the same as those of Lz
2—but we can only measure any one of these at 

any given time to arbitrary accuracy. In any case, we have generically for any coordinate 
q 
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where the quantum numbers ml can take on integer values from −l to l where l is the 
quantum number for the square of the total angular momentum operator. 
 
 Now, given what we just discussed above, one might think that it is impossible to 
obtain eigenvalues for Lx

2
+ Ly

2 , but that’s not true. It’s not possible to have eigenvalues 
for each operator in the sum simultaneously, but it’s entirely OK to have an eigenvalue 
for the sum without knowing the two parts. To see this, note that 
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2
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so 
 
 L

2
! Lz

2
= Lx

2
+ Ly

2  
 
and we already know that we can know both L2  and Lz

2  simultaneously! Thus, we have 
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One can think of these eigenvalues as being the part that needs to be added to Lz

2  in order 
to reach L2, but this additional component of the angular momentum can point in any 
direction within the plane defined by the z component having a constant value; that is, we 
don’t know the individual x and y components, so at best we know a circle of points 
around the z axis at which our angular momentum vector terminates. The angular 
momentum is said to “precess” about the z axis on this circle. 
 
Angular Momentum Eigenfunctions 
 
 We’ve now learned a great deal about angular momentum eigenvalues without 
ever determining the eigenfunctions. The time has come, however, to examine those 
functions. First, however, it is helpful to transform our coordinate system to spherical 
polar coordinates, because angular momentum intrinsically involves rotational motion, so 
it is useful to work in a coordinate system natural to rotation. 
 In the spherical polar coordinate system, a point in space is defined by its distance 
from the origin, r, its angle from the z axis, θ, and its angle from the x axis when the 
coordinate vector is projected into the xz plane, φ. To form the various angular 
momentum operators in this coordinate system, we need the relation between these 
variables and x, y, and z, and their differential operators. This is a tedious and boring 
derivation and we simply list the results here 
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From these terms, we can work out the forms of the total angular momentum operator, 
the component angular momentum operators, and the raising and lowering operators in 
spherical polar coordinates by substitution. 
 
 Let us consider the raising operator first, because it is useful in learning 
something about the angular momentum eigenfunctions. If we carry through the various 
substitutions we have 
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Now, recall that the effect of the raising operator operating on the angular momentum 
eigenfunction having the maximal value of the z component of the angular momentum is 
to annihilate it. That is, 
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where we represent our unknown eigenfunctions as Y(θ,φ) with two subscripts. The first 
subscript is the quantum number for the total angular momentum squared and the second 
is the subscript for the z component of the angular momentum. Because we are working 
with the Y that is maximal for the latter value, both subscripts are l. 
 Now, since h-bar(cosθ + isinθ) is never equal to zero, we can divide both sides by 
that quantity and obtain 
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If we assume that we may separate Y into a part dependent on θ and a part dependent on 
φ (in the same fashion we did previously when separating time and position in the 
Schrödinger equation), we have 
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Recalling that this is equal to zero for the special case of Yl,l we may rearrange eq. 12-5 
to 
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Since eq. 12-6 is true for any choice of θ or φ, it must be the case that both sides are equal 
to the same constant. Actually, we know the particular value of that constant in this case. 
That is because setting the right hand side equal to a constant C gives, after 
rearrangement 
 

 !i
"

"#
$ #( ) = C$ #( )  (12-7) 
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However, in spherical polar coordinates, the operator Lz is simply 
 

 
  

Lz = !ih
"

"#
 (12-8) 

 
(it is the simplicity of this operator in spherical polar coordinates that motivates the 
typical choice of z as the distinguished coordinate in angular momentum). Thus, eq. 12-7 
can be rewritten 
 
 

  

1

h
Lz! "( ) = C! "( )  (12-9) 

 
We’ve already specified that Y is an eigenfunction of Lz with eigenvalue l times h-bar, 
and Lz only depends on φ, so the φ-dependent part of Y must be the part that is acted upon 
to generate l times h-bar, and thus the constant C must be l. Putting this into eq. 12-7 
gives after rearrangement 
 

 !i
"# $( )
"$

! l# $( ) = 0  (12-10) 

 
A satisfactory normalized solution to this equation (you may wish to verify this) is 
 
 ! "( ) =

1

2#
e
il"  (12-11) 

 
Note that one of the requirements for a good wave function is that it be single-valued. For 
the coordinate φ, this requires that Φ(φ) = Φ(φ + 2π), since adding 2π radians to the 
coordinate φ simply cycles us back to the same place in spherical polar coordinates. 
Recall that the definition of the complex exponential is 
 
 e

il!
= cos l!( ) + i sin l!( )  (12-12) 

 
The cosine and sine functions are periodic with period 2π. So, in order for eq. 12-12 to be 
the same for ω equal to either φ or φ + 2π, it must be the case that the difference between 
lφ and l(φ + 2π) is an integral multiple of 2π. That is,  
 
 

  
l ! + 2"( ) # l! = ±n 2"( ) n = 0,1,2,K  (12-13) 

 
This equation requires that l = ±n. This requirement of periodicity is why we are 
restricted to integer values of ml and half-integer values are not allowed, even though 
our work with raising and lowering operators did not establish this point. 
 
 What about the remaining part of the wave function that depends on θ? We 
already know our constant is l, so the other side of eq. 12-6 may be set equal to it to 
generate 
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The solution to this differential equation is not so obvious, but a bit of playing around 
gives the normalized solution 
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 So, the complete eigenfunction for the state having the maximum component of 
the z angular momentum is 
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To find the remaining eigenfunctions, we need simply apply the lowering operator 
successively to generate the states having quantum numbers ml = l – 1, then l – 2, etc. 
 
 The application of the lowering operator to the wave function of eq. 12-16 is not 
at all a pleasant undertaking, and leads to the fairly horrifying but completely general 
result 
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 Fortunately, for lower values of l, it is quite straightforward to write the wave 
functions, which are generically known as the "spherical harmonics", in a much more 
sensible fashion. The spherical harmonics appear in many problems in physics, and they 
were known long before the advent of quantum mechanics. The complex functions 
derived here have the property that they are simultaneously eigenfunctions of both L2 and 
Lz. If we are willing to give up the property of their being eigenfunctions of the latter 
operator, we can take linear combinations of some of the complex functions to generate 
other functions that are everywhere real-valued. These are called the "real spherical 
harmonics". Note from eq. 12-17 that any spherical harmonic for which ml = 0 is 
immediately real valued, since the only term involving i  is the argument of the 
exponential function. The table below lists the first few spherical harmonics and some of 
their properties. 
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The Initial Spherical Harmonics 

Complex form Real (spherical) form Real (cartesian) form Nomenclature <L2> <Lz> 

1

4!

" 

# 
$ 

% 

& 
' 
1/2

 
1

4!

" 

# 
$ 

% 

& 
' 
1/2

 
1

4!

" 

# 
$ 

% 

& 
' 
1/2

 Y0,0; s0 0 0 

3

8!

" 

# 
$ 

% 

& 
' 
1/2

sin(e)i*    Y1,–1; p–1 
  2h
2    !h  

 
3

4!

" 

# 
$ 

% 

& 
' 
1/2

sin (sin ) 
3

4!

" 

# 
$ 

% 

& 
' 
1/2 y

r
 Y1,sinφ; py   2h

2  a 

3

4!

" 

# 
$ 

% 

& 
' 
1/2

cos( 
3

4!

" 

# 
$ 

% 

& 
' 
1/2

cos( 
3

4!

" 

# 
$ 

% 

& 
' 
1/2

z

r
 Y1,0; p0; pz   2h

2  0 

 
3

4!

" 

# 
$ 

% 

& 
' 
1/2

sin (cos)  
3

4!

" 

# 
$ 

% 

& 
' 
1/2

x

r
 Y1,cosφ; px   2h

2  a 

3

8!

" 

# 
$ 

% 

& 
' 
1/2

sin(ei)    Y1,1; p1 
  2h
2    h  

15

32!

" 

# 
$ 

% 

& 
' 
1/ 2

sin
2 (e)2i*    Y2,–2; d–2 

  6h
2    !2h  

 
15

4!

" 

# 
$ 

% 

& 
' 
1/2

sin
2 (sin 2)  

15

4!

" 

# 
$ 

% 

& 
' 
1/2

xy

r
2

 Y2,sin2φ; dxy   6h
2  a 

15

8!

" 

# 
$ 

% 

& 
' 
1/2

sin(cos(e)i*    Y2,–1; d–1 
  6h
2    !h  



  12-7 

 
15

4!

" 

# 
$ 

% 

& 
' 
1/2

sin (cos(sin )  
15

4!

" 

# 
$ 

% 

& 
' 
1/2

yz

r
2

 Y2,sinφ; dyz   6h
2  a 

5

16!

" 

# 
$ 

% 

& 
' 
1/ 2

3cos
2 ( )1( )  

5

16!

" 

# 
$ 

% 

& 
' 
1/ 2

3cos
2 ( )1( )  5

16!

" 

# 
$ 

% 

& 
' 
1/ 2

3
z
2

r
2
(1

" 

# 
$ 
$ 

% 

& 
' 
'  Y2,0; d0; dz2 

  6h
2  0 

 
15

4!

" 

# 
$ 

% 

& 
' 
1/2

sin (cos( cos)  
15

4!

" 

# 
$ 

% 

& 
' 
1/2

xz

r
2

 Y2,cosφ; dxz   6h
2  a 

15

8!

" 

# 
$ 

% 

& 
' 
1/2

sin(cos(ei)    Y2,1; d1 
  6h
2    h  

 
15

4!

" 

# 
$ 

% 

& 
' 
1/2

sin
2 ( cos2)  

15

16!

" 

# 
$ 

% 

& 
' 
1/ 2

x2 ( y2

r
2

 Y2,cos2φ; dx2–y2 
  6h
2  a 

15

32!

" 

# 
$ 

% 

& 
' 
1/ 2

sin
2 (e2i)    Y2,2; d2 

  6h
2    2h  

a  This real spherical harmonic is not an eigenfunction of Lz and thus its expectation value is not tabulated. 
 
The spherical harmonics continue through f, g, h, i, and higher functions (can you guess why e is skipped?), but those are not tabulated 
above. Very nice pictures of the square moduli of the complex spherical harmonics through f, as well as individual pictures of their 
real and complex components, can be found at http://mathworld.wolfram.com/SphericalHarmonic.html. Stunning pictures of the 
square moduli of the real spherical harmonics through f (although following a slightly different naming convention then that in the 
table) can be found at http://www.uniovi.es/qcg/harmonics/harmonics.html. Both links are on the class webpage. 
 
Homework  
 
To be solved in class:  Demonstrate explicitly that the eigenfunctions of Lz, i.e., the 

! 

"ml
#( ) , are orthogonal. 

 
To be turned in for possible grading Feb. 17:  Nothing! Relax, catch up, take a deep breath — whatever applies. 


