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Solved Homework (Homework for grading is also due today) 
 
 We are asked to demonstrate the orthogonality of the functions Φ(φ) that are the 
φ-dependent components of the spherical harmonics. We know that they are 
eigenfunctions of Lz, and thus, since they are non-degenerate eigenfunctions of a 
Hermitian operator, that they must be orthogonal, but demonstrating this point explicitly 
serves as a check on our accuracy, if you like. 
 
 So, the question is, given two eigenfunctions Φ characterized by different 
eigenvalues ml and ml´, is it true that 
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 The variable φ ranges from 0 to 2π. So, we evaluate the above integral as 
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 We may use the relationship 
 
 e
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to evaluate the first part of the solved integral. Since ml and ml´ are integers, their 
difference is also an integer. The cosine of an integral multiple of 2π is 1 and the sine of 
an integral multiple of 2π is 0. Substituting this simplification into the eqs. above 
provides 
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Thus proving the orthogonality of the eigenfunctions. Note that if ml and ml´ had been 
equal to one another, the original integrand would have simplified to e0dφ = dφ, the 
integral for which would be 2π, and as we've already seen, this gives rise to the 
normalization constant (2π)−1/2 included in Φ. 
 
 
The Rigid Rotator 
 
 We’ve previously considered two masses connected by a spring in solving the 
vibrational Schrödinger equation. The solutions were the quantum mechanical harmonic 
oscillator wave functions. Now, if we replace the spring with a solid rod (no vibration) 
and permit the system to rotate about an axis perpendicular to the rod, it will rotate about 
its center of mass. 
 
 As we discussed in lecture 3, the kinetic energy for a rotating system is 
 

 T =
l
2

2I
 (13-1) 

 
where l is the angular momentum and I is the moment of inertia. Although our original 
discussion considered only a single particle orbiting a fixed position, the moment of 
inertia generalizes to multiple particles as 
 

 I = miri
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where there are N total particles each having a distinct mass m and distance from the 
center of mass r. When there are only two particles, one can show with some 
straightforward algebra that 
 
 I = µR

2  (13-3) 
 
where µ is the reduced mass defined by 
 
 µ =

m1m2

m1 +m2
 (13-4) 
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and R is the length of the rigid rod connecting them. It would behoove you to memorize 
eqs. 13-3 and 13-4. 
 
 For a rigid rotator in free space, there is no potential energy affecting the system, 
and the Hamiltonian operator is simply the kinetic energy operator. Thus, the time-
independent, rigid rotator Schrödinger equation for a diatomic molecule is 
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where L2 is the total angular momentum squared operator with which we've just spent 
much time. We already know its eigenfunctions and eigenvalues, so we may rewrite eq. 
13-5 as 
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Thus, we see that the allowed energies of the rigid rotator are quantized by the total 
angular momentum quantum number l, and depend inversely on the moment of inertia. 
The energies are independent of ml. We already know that ml can take on 2l + 1 different 
values depending on l, so each energy level of the rigid rotator is 2l + 1 degenerate. 
 
 In discussing the rigid rotator for molecular rotation, it is traditional to replace the 
notation l with J for the total angular momentum quantum number. It is also traditional to 
define a rotational constant B according to 
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h
2
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In that case, the allowed energy levels for the rigid rotator may be compactly written as 
 
 EJ = J J + 1( )B  (13-8) 
 
 Note that the separation between allowed energy levels depends on B, which is 
itself a function of the atomic masses and R, the distance between them. If we know the 
identity of our molecule, say CO (carbon monoxide), we know the masses and the only 
unknown is the bond distance. So, if we can measure the separation between rotational 
energy levels (and know which levels are which), we can determine the bond length. This 
is indeed a standard protocol for determining molecular structure. 
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Microwave Spectroscopy of the Rigid Rotator 
 
 Consider the energy levels of the rigid rotator. The ground state, for which J = 0, 
has zero rotational energy according to eq. 13-8. Thus, there is no zero-point energy. This 
does not violate the uncertainty principle because, although we know the angular 
momentum exactly, we don't know anything about the angular "position" (how the 
molecule is oriented in space, if you will). The ground state has no degeneracy, since, 
given that the total angular momentum is zero, the only allowed value for the z 
component of the angular momentum is zero. 
 
 The next higher energy levels correspond to J =1, 2, 3, etc., and have energies 
according to eq. 13-8 of EJ = 2B, 6B, 12B, etc. with degeneracies of 3, 5, 7, etc. The 
degeneracies may be thought of as reflecting the different angles that are allowed 
between the axis of rotation and the z axis of the system. When the two axes are 
orthogonal, the z component of the angular momentum is zero. With higher total angular 
momenta, there are more deflections allowed from mJ = 0, but it can never get to the 
point where the z axis corresponds to the rotation axis, because then the z component of 
the angular momentum would be the total angular momentum, and we would know that 
the other two components must be zero, and this would violate the uncertainty principle. 
 
 In any case, we now know the separation in energy between levels, but we do not 
know the selection rules for what transitions are allowed (and may therefore be observed 
spectroscopically). Remember that to observe a transition, it must be true that the integral 
 
 !m µ!m = !m

*
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is not zero. Some playing around with the relevant integrals in spherical polar coordinates 
allows one to prove that spectroscopic transitions will only be observed between two 
rotational states m and n if 
 
 !J = ±1 and !mJ = 0 or ±1  (13-10) 
 
Thus, we can only observe transitions between adjacent rotational states, and those 
transitions cannot change the z component by more than one quantum number (one 
h-bar), although they are allowed to leave it unchanged. 
 
 The restrictions of transitions to only the next higher or lower quantum number is 
a delightful simplification for spectroscopic purposes. Let's consider absorption 
spectroscopy. For any state J being excited to state J + 1, we have 
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The Bohr hypothesis says that photons of energy E = hν will be absorbed at these 
characteristic energies, so we expect to see absorptions at frequencies 
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Molecular rotational frequencies are in the microwave region of the spectrum, so 

a typical rotational spectrum for a diatomic will appear very simple, namely 
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Note that the first absorption corresponds to the ground state to first excited state 
transition and occurs at 2B/h. Typically, however, it may be rather hard to decide exactly 
what line in a spectrum corresponds to the 0→1 transition. A much better way to 
determine 2B/h is to notice that the separation between every pair of adjacent lines is also 
equal to this value. So, if we have a nice spectrum like that above, and we know the 
masses of our two atoms, it is trivial to measure 2B/h and solve for R, the interatomic 
distance, which is the only unknown in B. 
 
 Note that the intensities of the absorptions depend on how many molecules are in 
the starting state, and that depends on the temperature (this is one of the reasons why it 
may be hard to see the 0→1 transition; the Boltzmann distribution may have very few 
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molecules in the ground state). Thus, this kind of spectroscopy can also be used to 
determine the temperature of a sample! 
 
 While we've considered thus far only a diatomic system, the approach outlined 
above works for any linear molecule. Non-linear molecules are more complicated than 
linear ones because they are characterized by three separate moments of inertia (one 
about each cartesian axis). In highly symmetric cases, however, relatively simple 
solutions of the correct rotational Schrödinger equation continue to exist. For instance, in 
molecules possessing an axis of rotation that is 3-fold or higher in symmetry, the two 
moments of inertia for rotation about the two axes perpendicular to the high-symmetry 
axis will be equal. For example, in fluoromethane (shown below), which is C3v, there is 
one moment of inertia, IA, about the symmetry axis A, and there are two equal moments 
of inertia, IB and IC, about the axes perpendicular to axis A. In this particular case, the 
magnitude of the latter two moments is larger than that of the former moment because the 
heavy atoms C and F have displacements of 0 from axis A but not from the other two, 
and such a molecule is called a prolate top. In the case of a prolate top, the rotational 
eigenvalues are given by 
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where K is the quantum number corresponding to ml, running over −J, −J+1, ..., J−1, J, 
and expressing the component of the angular momentum along the highest symmetry 
axis. The selection rules for a rotational transition in this case are ΔJ=±1 and ΔK=0, and 
thus eqs. 13-11 and 13-12 continue to be valid for absorption frequencies using I = IB in 
the rotational constant B. 
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 Less symmetric molecules require a considerably more complicated treatment, 
which we will not go through here, but in the end their spectral transitions are functions 
of their 3 moments of inertia. From a spectroscopy standpoint, then, prediction of 
rotational spectral lines depends only on the moments of inertia, and hence only on the 
molecular geometry. Thus, rotational spectra provide a good way to measure molecular 
structure within the regime where the rigid-rotor approximation is valid. To further nail 
down structures, one often carries out the spectroscopy on many different isotopomers of 
the molecule in which one is interested, in order to be able to vary the different moments 
of inertia in alternative fashions and thus narrow down the possible ways in which the 
atoms may be arranged relative to one another and still give the observed spectra. 
 
 
The Diffuse Interstellar Bands 
 
 Let's leave the world of the tiny and change length scales by, oh, 25 orders of 
magnitude or so. And, let’s ask a profound question:  What is the molecular composition 
of the matter which is found in distant regions of space? It should be fairly clear that 
sending a spaceship out to collect the contents of a nebula 2000 light years away is 
probably not the best experimental option for answering this question. 
 
 So, astrophysicists use spectroscopy (it's still sort of a long experiment, since the 
light being observed takes 2000 years to reach Earth in the above example, but we'll 
settle for knowing about the composition of the matter 2000 years ago...) One approach is 
to find a nebula (a cloud of gas and dust) in which you are interested, to look at the 
spectrum of a star shining through it, and to observe what frequencies of light are 
depleted that you would otherwise expect to see from the star (based on having observed 
similar stars that aren't stuck behind nebulae). Something must be absorbing those 
frequencies, and given their magnitudes you may be able to decide what that something 
is. Such spectroscopy is usually done in the UV/Vis region, and corresponds to electronic 
absorptions, like those we've already considered for the H atom in the Bohr model for 
that atom. 
 
 But what if the nebula is so thick that no starlight comes through? In that case, 
you can't look at absorptions, you have to look for emissions. Why might there be 
emissions? Well, one way in which a molecule can be in an excited state is if it 
exchanged energy with another molecule that just bashed into it. If it takes some energy 
from the other molecule in the collision, it can be in an excited rotational state. Given a 
sufficient amount of time, it will ultimately radiate a photon (in the microwave region) to 
come back into thermal equilibrium. 
 
 Space is fantastically diffuse, so molecular collisions, even in nebulae, occur on 
the time scale of days to years (!). Nevertheless, if you consider that a receiver on Earth 
gets to sample a path length of at least half the width of the universe (longer if you are 
willing to believe that you are not, personally, the absolute center of the universe…), then 
you will perhaps not be surprised to learn that this microwave radiation can be detected 
by enormous radio antennae. This is one function of radioastronomy:  to identify 
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molecular components of interstellar gas clouds based on their rotational emission 
spectra. These dominate the microwave region of what are called the diffuse interstellar 
bands (DIBs) in the universal spectrum. By observing changes in the DIBs as a function 
of what slice of sky is sampled, one can assign variations in signal to particular 
interstellar objects. 
 
 None of this would be possible if the rotational spectra were not to be quantized! 
If all values of angular momenta were allowed, we'd see no lines in spectra, only broad 
blurs that would be completely uninformative. 
 
 
Homework 
 
To be solved in class:   
 
The lowest microwave frequency absorbed by carbon monoxide (formed from the 12C 
and 16O isotopes) is 115.271 GHz.  (a) Compute the moment of inertia of CO and the 
average value of the C–O bond distance.  (b) Estimate the frequency at which the J = 1 to 
J = 2 transition occurs for this molecule in both GHz and cm–1. 
 
To be turned in for possible grading Feb. 24:   
 
Consider a 2-dimensional so-called planar rigid rotator—a quantum mechanical compact 
disc, if you will. In this system, rotation is confined to a plane, so all of the angular 
momentum is along a single axis. The Schrödinger equation for this system is thus 
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If the moment of inertia I is taken to be 1/2, what are the eigenfunctions and eigenvalues 
for this system (use spherical polar coordinates)? Looking at the Schrödinger equation for 
the free particle may be helpful, but this case is quantized, while that for the free particle 
is not—why is there a difference? What are the lowest 3 possible energies? What 
degeneracies are associated with these energies? 


