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Solved Homework 
 
 We are asked to give the minimum energy required for the ionization reaction 
 
 Be3+ → Be4+ + e− 
 
Since Be is atomic number Z = 4, this corresponds to ionization of the electron from a 
one-electron atom. One-electron atoms are the systems that we know how to deal with 
exactly based on our work of last lecture. 
 
 Note that the reason the poorly worded problem presumably says the “minimum 
energy” is that it has in mind the energy required to just separate the electron from the 
nucleus and leave both particles at rest (this defines the system’s zero of energy). You 
could, however, provide more energy, so that not only would the particles be infinitely 
separated, but they’d have some kinetic energy too, instead of being at rest. However, the 
problem is poorly worded because the correct answer is that the minimum energy is ε, 
where ε is a positive number arbitrarily close to zero. How can this be? Well, what if the 
electronic wave function corresponds to principle quantum number n = 109? The binding 
energy in that case is incredibly small (ε), and it’s easy to remove the electron. 
 
 To clean up the wording, one need only specify that Be3+ is in its ground state. In 
that case, we know that the binding energy of the electron to the nucleus is 
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 Now, we could go look up all the necessary constants and plug them in, and that 
would give a very nice answer. A quicker approach, however, is to use the datum 
provided that En=1(H) = −13.6 eV. Then we can consider 
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Thus, the final ionization potential for Be should be 16 times the ionization potential for 
H, or −217.6 eV. 
 
 
Hydrogenic Orbitals 
 
 Last lecture, we went through a fairly complicated process to derive the quantum 
restrictions on the energy levels of one-electron atoms, but we did not take the final step 
of putting our final quantum numbers back into our various differential equations to pull 
out the eigenfunctions themselves. 
 
 If one attempts to do this in a completely general way (i.e., for arbitrary quantum 
numbers n and l) one can write a general wave function in terms of what are called the 
associated Laguerre polynomials. This general form, however, is not terribly informative, 
and it is more useful to simply consider some of the specific functions associated with 
smaller quantum numbers. For example, what if we pick the principle quantum number n 
= 1? From our previous work, and in particular eq. 14-30, this requires that l and m both 
be zero, and β = n = 1. 
 
 The requirement that l be zero means that the spherical harmonic for this 
hydrogenic wave function will have to be Y0,0. From the table that is part of Lecture 12, 
we see 
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which is pleasantly simple. 
 
 As for the radial function, since m = 0, the only term in Σ(ρ) that is non-zero is the 
zeroth order term a0. This means, based on our earlier work 
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Recall that ρ was defined as the dimensionless quantity 2αr. If we plug back in all of the 
constants we get 
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So, the full wave function becomes  
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To solve for a0, we simply have to normalize Ψ100, where the subscripts on the wave 
function specify the principle quantum number n, the azimuthal quantum number l, and 
the z component of the angular momentum quantum number ml, respectively. 
 
 Prior to carrying out that normalization, however, it is time to do something to 
simplify our lives from here on out. It is time to introduce a new system of units, called 
"atomic units" (a.u.) In atomic units, the magnitude of various quantities is defined to be 
1, so that we need not write them! For instance, h-bar is defined to be one atomic unit of 
action. The dielectric permittivity of the vacuum is defined to be one. The charge on the 
electron is defined to be one. The mass of the electron (which is very close to µ) is 
defined to be one. In atomic units, eq. 15-4 simplifies to 
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which certainly will involve less bookkeeping when we work with it! Of course, if you 
want to convert from atomic units to other units, you'll have to make use of the proper 
conversion factors, but those are easy to look up. A handy table is provided on the next 
page. 
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Useful Quantities in Atomic and Other Units 

Physical quantity (unit 

name) 

Symbol Value in a.u. Value in SI units Value(s) in other units 

Angular momentum   h  1. 1.055 x 10–34 J s  2.521 x 10–35 cal s 

Mass me 1. 9.109 x 10–31 kg  

Charge e 1. 1.602 x 10–19 C  1.519 x 10–14 statC 

Vacuum permittivity 4πε0 1. 1.113 x 10–10 C2 J–1 m–1  2.660 x 10–21 C2 cal–1 Å–1 

Length (bohr) a0 1. 5.292 x 10–11 m  0.529 Å 

 52.9 pm 

Energy (hartree) Eh 1. 4.360 x 10–18 J  627.51 kcal mol–1 

 2.626 x 103 kJ mol–1 

 27.211 eV 

 2.195 x 105 cm–1 

Electric dipole moment ea0 1. 8.478 x 10–30 C m  2.542 D 

Electric polarizability e2a02Eh–1 1. 1.649 x 10–41 C2 m2 J–1  

Planck’s constant h 2π 6.626 x 10–34 J s  

Speed of light c 1.370 x 102 2.998 x 108 m s–1  

Bohr magneton µB 0.5 9.274 x 10–24 J T–1  

Nuclear magneton µN 2.723 x 10–4 5.051 x 10–27 J T–1  
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Note that by adopting a.u. for our unit system in eq. 15-5, it becomes implicit that we 
measure r in the atomic unit of distance, the bohr, which is 0.529 Å. An example of how 
quickly a.u. simplify expressions is that the energy of the hydrogenic atom (eq. 14-34) is 
given in these units as En = −Z2/2n2. So, a ground state (n = 1) hydrogen atom has energy 
−0.5 Eh. 
 
 So, now if we want to normalize Ψ100, we must solve 
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If we use this in eq. 15-5 (now explicitly taking n = 1; we've carried it as a variable up 
until now because that will help to explain later results) we have  
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This is really a rather simple form. 
 
 We can carry out similar manipulations for each additional choice of n and 
possible l values. Note that (a) when n > l + 1, we will have terms past a0 in Σ(ρ) that are 
non-zero, but by the recursion formula eq. 14-26, every one can be written in terms of a0, 
whose ultimate value for the particular wave function will be determined by requiring 
normalization, and (b) when l > 0 we will have a polynomial in r up to rl multiplying the 
spherical harmonic and the exponential parts in the wave function. The table below 
shows the final results for the various hydrogenic one-electron wave functions without 
going through the detailed derivation for each one. 
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The Hydrogenic One-Electron Wave Functions 

Complex form Real (spherical) form Real (cartesian) forma Nomenclature 
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a  The radial variable r is still used in these expressions to avoid the tedium of replacing it with (x2 + y2 + z2)1/2 throughout. 
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 There are many qualitative features to notice about these wave functions, some of 
which are familiar to even beginning students of chemistry, and some of which are only 
clear with our quantum mechanics background upon which now to draw. Let’s focus on 
the most important: 
 
1. s orbitals are radially symmetric, p orbitals are axially symmetric, d orbitals have 

alternating four-fold symmetry, etc. 
 
2. The exponential radial decay of a hydrogenic wave function depends inversely on 

the principle quantum number. 
 
3. The orbital energy for a given atom having atomic number Z depends only on the 

principle quantum number n (see eq. 13-34). Thus, all wave functions having the 
same principle quantum number are degenerate in energy irrespective of whether 
they are s, p, or d, etc. Each principle quantum level has a total degeneracy of n2. 
(Count up the first few if you don’t see this). 

 
4. Because of the incorporation of the spherical harmonics in the wave functions, we 

may use either complex or real forms. The complex forms are eigenfunctions of 
Lz, while the real ones generally are not. Most people are used to the depictions of 
the real ones. 

 
5. Every wave function has n − 1 nodes where n is the principle quantum number. 

There are n − l − 1 spherical nodes in the radial direction, and the remainder of 
the nodes, if there are any, are associated with spherical harmonic nodal planes 
that include the nucleus (i.e., the origin of the spherical polar coordinate system). 

 
6. With increasing atomic number Z, the wave functions decay more quickly with r 

and have larger amplitude near the nucleus to ensure normalization. 
 
7. s wave functions have non-zero amplitude at the nucleus. Indeed, the s wave 

functions have cusps (maxima at which they are not differentiable) at the nucleus. 
All other wave functions are zero at the nucleus. 

 
8. Hydrogenic wave functions have non-zero values everywhere except at nodal 

positions. What is usually illustrated, though, is a surface of constant probability 
density (e.g., |Ψ|2 = 0.0001 a.u., where the atomic unit of probability density is 
bohr−3). 
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Homework 
 
To be solved in class:   
 
For a hydrogenic atom in a.u., <H> = −Z2/2n2 and <r−1> = −Z/n2. What is the value of 
<−!2 / 2>? It may not look like it, but this problem is very easy and should not require 
the solution of any integrals.  Hint:  What is the Hamiltonian for the hydrogenic atom? 
 
To be turned in for possible grading Feb. 25:   
 
If you were to measure the distance of a 2s electron from the nucleus in a He+ atom, what 
would be the average value, in Å, that you would obtain after a very, very large number 
of measurements? (Hint:  if you’ve no idea where to start on this problem, think about 
what operator gives the distance of the electron from the nucleus.) (Caveat:  be very 
careful about using proper limits and volume elements in any integrals you might try to 
solve—perhaps with the help of an integral table…) Will the value for Li2+ be the same, 
or different? Why? 


