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Solved Homework (Homework for grading is also due today) 
 
 Given that for a hydrogenic atom 
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where we have explicitly written the proper kinetic and potential energy operators. We 
are reminded/given that 
 

 H = !
Z
2

2n
2

and r
!1

=
Z

n
2

 

 
so it is trivial to determine 
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Thus, the expectation value of the kinetic energy is −1/2 times the expectation value of 
the potential energy. This relationship of <T> = −(1/2)<V> is a manifestation of what is 
known as the quantum mechanical virial theorem, and it holds true for all wave functions 
where the potential energy term in the Hamiltonian operator depends only on r–1 to one or 
more nuclei. 
 
 
Atomic Spectroscopy 
 
 The hydrogenic (one-electron) atom has 3 quantum numbers associated with each 
wave function. Two of these are from the spherical harmonics, and we already know the 
selection rules on the spherical harmonics: 
 
 !l = ±1 and !ml = 0, ±1  (16-1) 
 
without derivation we will simply accept that the selection rule for Δn is that 
absorption/emission is allowed for any change in n (note that n must change from one 
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value to another, or else E, which depends only on n, fails to change, and then there is no 
opportunity to absorb or emit a photon in the first place!) 
 
 The figure on the next page illustrates allowed transitions in the spectrum of a 
hydrogenic atom. Note that, although the figure is terribly complicated in the sense that 
many, many transitions are allowed, an actual measured spectrum would be relatively 
simple, because of the very small number of different ΔE values. A single photon 
frequency is associated with each ΔE, and thus there is a single ν for every n = 1 → n = 2 
transition, and a single ν for every n = 2 → n = 3 transition, irrespective of the actual 
orbitals involved at the particular principal quantum number level. 
 
 Truth is, of course, life is not quite that simple. It's only that simple if you use a 
low-resolution spectrometer. If you look more carefully, or you make the experiment a 
bit more complicated, suddenly you find a lot of new lines in the spectrum (different 
photon frequencies). Let's start with the most profound complication. 
 
 
Electron Spin 
 
 In 1922, Stern and Gerlach did the following experiment. 
 
1) Heat a block of silver until it vaporizes (whoa...) 
 
2) Arrange the pressure in the experimental system such that the gas of silver atoms 

collimates into a "beam" that passes through the poles of a magnet. 
 
3) Observe where the silver atoms strike a target behind the magnet. 
 
Here's what Stern and Gerlach expected. The silver atom can be thought of as being like a 
very big hydrogen atom. That's because all of the electrons but one completely fill 
principal quantum number levels 1 to 3 and the 4s, 4p, and 4d levels. So, for the one 
remaining electron in the 5s orbital, it’s a little bit like being around a nucleus of unit 
positive charge since “underneath” it, it sees 47 protons and 46 electrons that are 
spherically symmetric. With that picture, it should be clear that the total angular 
momentum of the electron/“nucleus” system is L = 0, just as is the case for an H atom 
with its one electron in an s orbital. In the absence of angular momentum, the silver atom 
should not interact with a magnetic field, and the target should show a continuous smear 
of silver that drops off from the center, with the smearing attributable only to the beam 
not being perfectly collimated. 
 
Here, though, is what they actually saw. Well, legend has it that Gerlach, who was doing 
the experiment, didn't see anything at all at first. The beam of silver atoms was so dilute 
that when the silver recondensed on the target there was too little to make out with the 
naked eye. Then Stern, the German überprofessor, came in smoking an enormous cigar, 
as was his wont. He leaned over the experimental apparatus, exhaled, looked at the target,  
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and saw two distinct dark lines, one above and one below. Gerlach rubbed his eyes and 
shook his head, and Stern walked away muttering about his collaborator’s incompetence. 
Gerlach returned his attention to the apparatus, but the lines were gone! He called Stern 
again. Again, Stern came in, puffed out some cigar smoke, and pointed out the obvious 
dark lines. 
 
 It turns out that the silver reacted with the cigar smoke to form silver sulfide, 
which is a very dark opaque substance, and this permitted the visualization of the small 
amount of silver.  
 
 In any case, the key experimental result was that instead of a single smear of 
atoms, reflecting zero electronic angular momentum, there were two distinct lines, 
evidently reflecting some other angular momentum and, moreover, since the lines were 
distinct, that other angular momentum must be quantized, with only two possible values. 
 
 Since Stern and Gerlach knew the angular momentum couldn't come from the 
electron's orbital, they proposed that perhaps the electron itself was spinning about an 
axis, which would then introduce an angular momentum intrinsic to the electron and not 
associated with the orbital. Moreover, apparently the electron could spin at only one 
"speed", since then the two lines would be explained by spinning either clockwise or 
counterclockwise. Of course, they knew that electrons were quantum species, and not 
little spinning particles, but the terminology made a connection to classical physics and it 
has persisted to this day. 
 
 So, where does this intrinsic electronic “spin” come from? Well, we have to go 
back to Einstein again to explain it. Einstein's theory of relativity says that most of 
classical physics is a special case of things simplifying because the objects in which we 
are interested move much, much more slowly than the speed of light in a vacuum (3 x 
1010 cm s−1). However, as things begin to approach that limiting speed, odd things begin 
to happen:  mass increases, length decreases, the rate of time's passage changes (ulp!), 
and things just get decidedly non-classical. 
 
 In 1928, Paul Dirac decided to reformulate the Schrödinger equation for a free 
electron in order to make it consistent with relativity. The math associated with this 
equation is, frankly, horrifying. Dirac, however, was as smart a mathematician as anyone 
could really hope to be, so, at the tender age of a typical college student, he worked out 
the appropriate solutions to the Schrödinger equation and discovered the startling 
implications of including relativity: 
 
1) Positrons (the anti-particle to the electron) must exist. Actually, Dirac's math 

showed this, but in the end he was afraid to propose something so loony. Fifteen 
years later, more or less, the positron was identified after others had pointed out 
that his equations predicted its existence. When asked why he had not emphasized 
in 1928 that his theory made this prediction, he replied "Cowardice." 
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2) (This discovery is more important for us) The electron has associated with it its 
own quantum number s; Dirac maintained the Stern-Gerlach nomenclature and 
called it the spin quantum number. The electron has an intrinsic total angular 
momentum of   

! 

3/4h , which corresponds to a value for s of 1/2 (remember when 
we explored the properties of the raising and lowering operators for angular 
momentum, we found that we could have either integer or half-integer solutions 
to the quantum numbers? We later discovered that for rotation in 3 dimensions we 
needed to use the integer solutions to satisfy rotational boundary conditions on φ, 
but the electron spin is a case where half-integer solutions work instead). 

 
 So, by analogy to orbital angular momentum, we have the following relationships 
for electronic spin angular momentum and eigenfunctions Φ: 
 
 

! 

S = Sx + Sy + Sz  (16-2) 
 
and, for an odd number of electrons, 
 

 

  

! 

S
2
" = s s+1( )h2" s =

1

2
,
3

2
,
5

2
,K

Sz" = msh" ms = #s,# s#1( ),K,#
1

2
,
1

2
,K s#1( ),s

 (16-3) 

 
while for an even number of electrons 
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For a single electron, s is 1/2, and ms is perforce either 1/2 or −1/2. When there is more 
than one electron, s is determined from the sum of the individual s values, just as net 
angular momentum is the sum of orbital angular momenta. So, two electrons can have s = 
0 (opposite spins) or s = 1, and so forth. 
 
 Because there are only two eigenfunctions of the operator Sz for a single electron, 
these eigenfunctions have been given special names:  α and β. They are defined as 
 

 

  

! 

Sz" =
1

2
h"

Sz# = $
1

2
h#

 (16-5) 

 
An important thing to keep in mind is that the operators S2 and Sz do not operate on 
functions of position or momentum, they operate on their own special sets of coordinates, 
called spin coordinates, which are often written as ωn where ω means a spin coordinate 
and it is the coordinate for electron n. We make this point because, continuing the 
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notation above, we can construct a complete wave function for an electron in an atom 
fairly simply, noting the separability of the spatial and spin coordinates as 
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 (16-6) 

 
That is, the full wave function is just the spatial part we've already worked out times the 
spin part. 
 
 That's actually an approximation that works very well, generally. The truth is, 
however, that as of today no one has figured out how to solve the relativistic Schrödinger 
equation for more than one particle (e.g., not even for the hydrogen atom). Dirac won the 
Nobel prize for his work on the electron; he was so young that his mother had to 
chaperone him to Stockholm to accept it. 
 
 
Total Angular Momentum 
 
 The total angular momentum of an electron is defined as J and is, to a good 
approximation in light atoms (through about the first five rows of the periodic table), 
equal to L + S. So, if we think of an electron in an s orbital, l = 0 and s = 1/2, and thus j = 
1/2 (j is the quantum number for the operator J). If the electron is in a p orbital, l =1. 
However, L and S are vector quantities, so when we add them we need to worry about 
whether they add cooperatively or anticooperatively. If they add cooperatively, j = 3/2, if 
anticooperatively, j = 1/2. For a d orbital, we have possible j values of 5/2 and 3/2, and so 
on. 
 
 For a hydrogenic atom, we write the precise one-electron wave function as 
follows 
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where n specifies the principle quantum number (1, 2, 3, etc.), S, P, D, etc. are upper-case 
letters specifying the value of l (by analogy to the orbitals with corresponding lower-case 
letters). The "2" is a left-superscript of the upper-case letter and is pronounced "doublet". 
We'll say more about this when we start dealing with systems having more than one 
electron. The subscript can take on one of two values, as indicated. 
 
 It turns out that states of identical n and l but different j have different energies. 
The energy difference is equal to 
 
 !Ej+1, j = Anl j +1( )  (16-8) 
 
where the "spin-orbit coupling constant" is defined in atomic units as 
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 (16-9) 

 
where α is called the "fine-structure constant" and is equal to 1/c where c is the speed of 
light (in atomic units), Z is the atomic number, and n and l are the principal and azimuthal 
quantum numbers. For the 22P state of hydrogen, A21 is about 0.000001 Eh. This energy 
difference between the 1/2 and 3/2 j states is very small:  roughly 0.4 cm−1. Thus, it is 
difficult to see the two energy levels without a very high resolution spectrometer (the 
transition itself is at 82,260 cm−1, so the splitting is 0.0005 % of the transition energy). 
Note, however, that the size of the spin-orbit coupling constant depends on the 4th power 
of the atomic number. So, by the time one gets to fairly heavy atoms, say, Z = 50, the 
numerator is 6,250,000 times larger. The denominator is also slightly larger, since the 
principal quantum numbers for valence orbitals go up too, but the splitting can become 
quite noticeable on a "chemical" scale. 
 
 It is worth noting that the spectroscopy of the atom has a selection rule for j as 
well as for l and ml. That rule is Δj = 0 or ±1. 
 
 
The Zeeman Effect and Electron Spin Resonance Spectroscopy 
 
 In the presence of a magnetic field (as in the Stern-Gerlach experiment), the 
magnetic moment associated with a charged particle like an electron possessing angular 
momentum can interact with the magnetic field. When the moment is aligned with the 
field, energy is higher than when it opposes the field. A more formal way to express this 
is to say that the Hamiltonian operator changes when there is a magnetic field. In addition 
to the kinetic energy and Coulomb potential terms, there is a new term involving the 
magnetic field, so that the total energy E is now computed as 
 
 E = T + V + gjµBHmj  (16-10) 
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where µB is the Bohr magneton, which is the magnetic moment of a free electron (it is 
equivalent to the gyromagnetic ratio in nuclear magnetic resonance (NMR) spectroscopy 
of nuclei), H is the magnetic field strength, mj is the quantum number for the component 
of the total angular momentum J along the magnetic field direction (nearly always called 
the z direction), and gj is called the Landé g factor. The g factor is much like the chemical 
shift in NMR spectroscopy:  it provides information about the "environment" of the 
electron. For a free electron, it is very close to 2.0. In an atom, it is equal to 
 

 gj =1 +
j j +1( ) + s s +1( ) ! l l +1( )

2 j j + 1( )
 (16-11) 

 
where j, s, and l are the total angular momentum, spin, and azimuthal quantum numbers, 
respectively. (Notice that for a free electron we'd expect s = 1/2, and j = 1/2, and perhaps 
l = 0 since the electron is not in an orbital but is a delocalized sine or cosine wave, so the 
quoted value of about 2.0 for the free electron is consistent with equation 16-11.) 
 
 Recalling that mj can take on half integer values ranging from −j to j, this implies 
that a magnetic field will “split the degeneracy” of levels characterized by a single j 
value. Thus, a particular j level will split into its various mj energy levels, each of which 
is separated from the next by gjµBH. This splitting is known as the Zeeman effect. The 
selection rule that comes into play after this splitting allows only transitions for which  
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Δmj = 0 or ±1. The figure above illustrates the energy levels involved in our various 
models for the H atom. 
 
 
On the left are the 1S and 2P energy levels for the "spin-free" hydrogen atom (a fictional 
system). When electron spin is considered, the 2P level splits into j = 1/2 and 3/2 levels, 
and the splitting depends on the spin orbit coupling constant as discussed above. There 
are two allowed transitions in this system compared to the spin-free case. This is the 
situation that is observed in actual H in the absence of an applied magnetic field. When a 
magnetic field is applied, all levels are split into their various mj energy levels, with the 
splitting dependent on the electronic g value and the strength of the applied magnetic 
field. For the same electronic states there are now ten allowed transitions. 
 
 In addition to the Zeeman effect on electronic spectroscopy (which is typically 
carried out in the visible/UV range of the spectrum), a different spectroscopic technique 
called electron spin resonance spectroscopy, or ESR, can measure directly transitions 
between different mj energy levels for a single state (for typical magnetic fields, such 
transitions occur in the microwave region of the spectrum). This permits determination of 
g which is to ESR what the chemical shift δ is to NMR. Since g tells about the nature of 
the orbital in which a free electron resides, it can offer much chemical insight into the 
nature of systems having unpaired electrons. One of the first ESR spectra was of the 
unpaired electron in chlorophyll which aided in the explanation of the mechanism of 
photosynthesis in green plants. 
 
 
 
 
 
 
 
 
Homework (n/a — prepare for Exam II) 
 
Sample Exam Problems 
 
1. Which of the following statements is/are true about <x2> evaluated for one-

dimensional QMHO wave functions over the same potential V? 
 
(a) Parity requires it to be zero for 

levels where n is even 
(e) It is equal to <V>/k where k is the 

oscillator force constant 
(b) It decreases with increasing n (f) (b) and (c) 
(c) It is equal to <x>2 (g) (c) and (d) 
(d) It is always positive (h) (b), (d), and (e) 
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2. Which of the following statements about angular momentum operators, 
eigenvalues, and eigenfunctions is/are true? 

 
(a) L+ = (L−)* (e) L−Yl,l = 0 
(b) <L2> = <Lz>2 if ml = l (f) (a) and (e) 
(c) For each value of l there are 2l + 1 

possible values of ml  
(g) (a), (c) and (d) 

(d) L+Yl,l = 0 (h) All of the above 
 
3. For a diatomic molecule, what is the rotational constant B? 
 
(a) The eigenvalue of L2 (e)   h

2
/µR

2  where µ is the reduced 
mass and R is the bond length 

(b) The eigenvalue of Lz (f)   h
2
/ 2I  where I is the moment of 

inertia 
(c) 0 (g) (e) and (f) 
(d) J + K (h) None of the above 
 
4. An electron of spin α is in a 3d orbital. Which of the below sets of quantum 

numbers (n, l, ml, s, ms, j, mj) might reasonably describe such an electron? 
 
(a) (3, 3, 3, 3, 3, 3, 1) (e) (3, 2, 2, 1/2, 1/2, 5/2, 5/2) 
(b) (3, 3, 2, 1/2, 1/2, 5/2, 5/2) (f) (c) and (e) 
(c) (3, 2, 0, 1/2, 1/2, 5/2, 1/2) (g) (b), (c), (d) and (e) 
(d) (3, 2, 0, –1/2, –1/2, 5/2, –1/2) (h) None of the above 
 
 
(Answers may be found on class website) 


