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Christopher J. Cramer 
 

Lecture 17, March 1, 2006 
 
(Some material in this lecture has been adapted from Cramer, C. J. Essentials of 
Computational Chemistry, Wiley, Chichester:  2002; pp. 96-105.) 
 
 
Recapitulation of the Schrödinger Equation and its Eigenfunctions and Eigenvalues 
 
 The operator that returns the system energy, E, as an eigenvalue is called the 
Hamiltonian operator, H. Thus, we write 
 
 HΨ = EΨ (17-1) 
 
which is the Schrödinger equation. The typical form of the Hamiltonian operator with 
which we will be concerned takes into account five contributions to the total energy of a 
system (from now on we will say molecule, which certainly includes an atom as a 
possibility):  the kinetic energy of the electrons and nuclei, the attraction of the electrons 
to the nuclei, and the interelectronic and internuclear repulsions. In more complicated 
situations, e.g., in the presence of an external electric field, in the presence of an external 
magnetic field, in the event of significant spin-orbit coupling in heavy elements, taking 
account of relativistic effects, etc., other terms are required in the Hamiltonian. We will 
consider some of these at later points, but we will not find them necessary for this lecture. 
Casting the Hamiltonian into mathematical notation (avoiding atomic units, for the 
moment, to ensure maximum clarity), we have 
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where i and j  run over electrons, k and l run over nuclei,   h  is Planck’s constant divided 
by 2π, me is the mass of the electron, mk is the mass of nucleus k, ∇2 is the Laplacian 
operator, e is the charge on the electron, Z is an atomic number, 4πε0 is the permittivity 
of free space, and rab is the distance between particles a and b. Note that Ψ is thus a 
function of 3n coordinates where n is the total number of particles (nuclei and electrons), 
e.g., the x, y, and z cartesian coordinates specific to each particle. If we work in cartesian 
coordinates, the Laplacian has the form 
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 In general, eq. 17-1 has many acceptable eigenfunctions Ψ for a given molecule, 
each characterized by a different associated eigenvalue E. That is, there is a complete set 
(perhaps infinite) of Ψi with eigenvalues Ei. For ease of future manipulation, we may 
assume without loss of generality that these wave functions are orthonormal, i.e., for a 
one particle system where the wave function depends on only three coordinates, 
 
 !""" i

*!j dx dydz = #ij  (17-4) 
 
where δij is the Kronecker delta (equal to one if i = j and equal to zero otherwise). 
Orthonormal actually implies two qualities simultaneously:  “orthogonal” means that the 
integral in eq. 17-4 is equal to zero if i ≠ j and “normal “means that when i = j the value 
of the integral is one. For ease of notation, we will henceforth replace all multiple 
integrals over cartesian space with a single integral over a generalized 3n-dimensional 
volume element dr, rendering eq. 17-4 as 
 
 !" i

*!j dr = # ij  (17-5) 
 
 Now, consider the result of taking eq. 17-1 for a specific Ψi, multiplying on the 
left by Ψj* and integrating. This process gives 
 
 !" j

*H!i dr = !" j
*Ei!i dr  (17-6) 

 
Since the energy E is a scalar value, we may remove it outside the integral on the r.h.s. 
and use eq. 17-5 to write 
 
 !" j

*H!i dr = Ei# ij  (17-7) 
 
This equation will prove useful later on, but it is worth noting at this point that it also 
offers a prescription for determining the molecular energy. With a wave function in hand, 
one simply constructs and solves the integral on the left (where i and j are identical and 
index the wave function of interest). Of course, we have not yet said much about the form 
of the wave function, so the nature of the integral in eq. 17-7 is not obvious . . . although 
one suspects that it might be decidedly unpleasant to solve in many instances. 
 
The Variational Principle 
 
The power of quantum theory is that if one has a molecular wave function in hand, one 
can calculate physical observables by application of the appropriate operator in a manner 
analogous to that shown for the Hamiltonian in eq. 17-7. Regrettably, we are occasionally 
left without a prescription for obtaining the orthonormal set of molecular wave functions 
because the relevant differential equations do not admit to analytic solutions. Let us 
assume for the moment, however, that we can pick an arbitrary function, Φ, which is 
indeed a function of the appropriate electronic and nuclear coordinates to be operated 
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upon by the Hamiltonian. Since we defined the set of orthonormal wave functions Ψi to 
be complete (and perhaps infinite), the function Φ must be some linear combination of 
the Ψi, i.e., 
 ! = ci"i

i

#  (17-8) 

 
where, of course, since we don’t yet know the individual Ψi, we certainly don’t know the 
coefficients ci either! Note that the normality of Φ imposes a constraint on the 
coefficients, however, deriving from 
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 Now, let us consider evaluating the energy associated with wave function Φ. 
Taking the approach of multiplying on the left and integrating as outlined above, we have 
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where we have used eq. 17-7 to simplify the r.h.s. Thus, the energy associated with the 
generic wave function Φ is determinable from all of the coefficients ci (that define how 
the orthonormal set of Ψi combine to form Φ) and their associated energies Ei. 
Regrettably, we still don’t know the values for any of these quantities. However, let us 
take note of the following. In the set of all Ei there must be a lowest energy value (i.e., 
the set is bounded from below); let us call that energy, corresponding to the “ground 
state”, E0. [Notice that this boundedness is a critical feature of quantum mechanics! In a 
classical system, one could imagine always finding a state lower in energy than another 
state by simply “shrinking the orbits” of the electrons to increase nuclear-electronic 
attraction while keeping the kinetic energy constant.] 
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 We may now combine the results from eqs. 17-9 and 17-10 to write 
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As square moduli, each term ci

2  must be greater than or equal to zero. By definition of 
E0, the quantity (Ei – E0) must also be greater than or equal to zero. Thus, we have 
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which we may rearrange to 
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(note that when Φ is normalized, the denominator on the l.h.s. is 1, but it is helpful to 
have eq. 17-13 in this more general form for future use). 
 
 Eq. 17-13 has extremely powerful implications. If we are looking for the best 
wave function to define the ground state of a system, we can judge the quality of wave 
functions that we arbitrarily guess by their associated energies, the lower the better. This 
result is critical because it shows us that we don’t have to construct our guess wave 
function Φ as a linear combination of (unknown) orthonormal wave functions Ψi, but we 
may construct it in any manner we wish. The quality of our guess will be determined by 
how low a value we calculate for the integral in eq. 17-13. Moreover, since we would like 
to find the lowest possible energy within the constraints of how we go about constructing 
a wave function, we can use all of the tools that calculus makes available for locating 
extreme values. 
 
 
Brief Introduction to the Born-Oppenheimer Approximation 
 
 Up to now, we have been discussing many-particle molecular systems entirely in 
the abstract. In fact, accurate wave functions for such systems are extremely difficult to 
express because of the correlated motions of particles. That is, the Hamiltonian in eq. 17-
2 contains pairwise attraction and repulsion terms, implying that no particle is moving 
independently of all of the others (the term “correlation” is used to describe this 
interdependency). In order to simplify the problem somewhat, we may invoke the so-
called Born-Oppenheimer approximation. This approximation will be described with 
more rigor later in the course, but at this point we present the conceptual aspects without 
delving deeply into the mathematical details. 
 
 Under typical physical conditions, the nuclei of molecular systems are moving 
much, much more slowly than the electrons (recall that protons and neutrons are about 
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1800 times more massive than electrons and note the appearance of mass in the 
denominator of the kinetic energy terms of the Hamiltonian in eq. 17-2). For practical 
purposes, electronic “relaxation” with respect to nuclear motion is instantaneous. As 
such, it is convenient to decouple these two motions, and compute electronic energies for 
fixed nuclear positions. That is, the nuclear kinetic energy term is taken to be independent 
of the electrons, correlation in the attractive electron-nuclear potential energy term is 
eliminated, and the repulsive nuclear-nuclear potential energy term becomes a simply 
evaluated constant for a given geometry. Thus, the electronic Schrödinger equation is 
taken to be 
 

 Hel + VN( )!el qi;qk( ) = Eel!el qi ;qk( )  (17-14) 
 
where the subscript “el” emphasizes the invocation of the Born-Oppenheimer 
approximation, Hel includes only the first, third, and fourth terms on the r.h.s. of eq. 17-2, 
VN is the nuclear-nuclear repulsion energy, and the electronic coordinates qi are 
independent variables but the nuclear coordinates qk are parameters (and thus appear 
following a semicolon rather than a comma in the variable list for Ψ). The eigenvalue of 
the electronic Schrödinger equation is called the “electronic energy”. 
 
 In general, the Born-Oppenheimer assumption is an extremely mild one, and it is 
entirely justified in most cases. It is worth emphasizing that this approximation has very 
profound consequences from a conceptual standpoint—so profound that they are rarely 
thought about but simply accepted as dogma. Without the Born-Oppenheimer 
approximation we would lack the concept of a potential energy surface:  The PES is the 
surface defined by Eel over all possible nuclear coordinates. We would further lack the 
concepts of equilibrium and transition state geometries, since these are defined as critical 
points on the PES; instead we would be reduced to discussing high-probability regions of 
the nuclear wave functions. Of course, for some problems in Chemistry, we do need to 
consider the quantum mechanical character of the nuclei, but the advantages afforded by 
the Born-Oppenheimer approximation should be manifest. 
 
 
Construction of Trial Wave Functions:  LCAO Basis Set Approach 
 
 Eq. 17-14 is simpler than eq. 17-1 because electron-nuclear correlation has been 
removed. The remaining correlation, that between the individual electrons, is 
considerably more troubling. For the moment we will take the simplest possible approach 
and ignore it; we do this by considering systems with only a single electron. The 
electronic wave function has thus been reduced to depending only on the fixed nuclear 
coordinates and the three cartesian coordinates of the single electron. The eigenfunctions 
of eq. 17-14 for a molecular system may now be properly called molecular orbitals 
(MOs; rather unusual ones in general, since they are for a molecule having only one 
electron, but MOs nonetheless). To distinguish a one-electron wave function from a 
many-electron wave function, we will designate the former as ψel and the latter as Ψel. 
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We will hereafter drop the subscript “el” where not required for clarity; unless otherwise 
specified, all wave functions are electronic wave functions. 
 
 The pure electronic energy eigenvalue associated with each molecular orbital is 
the energy of the electron in that orbital. Experimentally, one might determine this energy 
by measuring the ionization potential of the electron when it occupies the orbital (fairly 
easy for the hydrogen atom, considerably more difficult for polynuclear molecules). To 
measure Eel, which includes the nuclear repulsion energy, one would need to determine 
the “atomization” energy, that is, the energy required to ionize the electron and to remove 
all of the nuclei to infinite separation. In practice, atomization energies are not measured, 
but instead we have compilations of such thermodynamic variables as heats of formation. 
The relationship between these computed and thermodynamic quantities will be 
discussed in more detail later in the course. 
 
 As noted above, we may imagine constructing wave functions in any fashion we 
deem reasonable, and we may judge the quality of our wave functions (in comparison to 
one another) by evaluation of the energy eigenvalues associated with each. The one with 
the lowest energy will be the most accurate and presumably the best one to use for 
computing other properties by the application of other operators. So, how might one go 
about choosing mathematical functions with which to construct a trial wave function? 
This is a typical question in mathematics—how can an arbitrary function be represented 
by a combination of more convenient functions? The convenient functions are called a 
“basis set”. Indeed, we have already encountered this formalism—we used power series 
as polynomial basis sets for harmonic oscillator and hydrogenic wave functions. 
 
 In our QM systems, we have temporarily restricted ourselves to systems of one 
electron. If, in addition, our system were to have only one nucleus, then we would not 
need to guess wave functions, but instead we could solve eq. 17-14 exactly. The 
eigenfunctions that are determined in that instance are the familiar hydrogenic atomic 
orbitals, 1s, 2s, 2p, 3s, 3p, 3d, etc., whose properties and derivation we’ve already 
discussed in detail. We now posit that, as functions, they may be useful in the 
construction of more complicated molecular orbitals. In particular, just as in eq. 17-8 we 
constructed a guess wave function as a linear combination of exact wave functions, so 
here we will construct a guess wave function φ as a linear combination of atomic wave 
functions ϕ, i.e., 
 

 ! = ai"i
i=1

N

#  (17-15) 

 
where the set of N functions ϕi is called the “basis set” and each has associated with it 
some coefficient ai. This construction is known as the linear combination of atomic 
orbitals (LCAO) approach. 
 
 Note that eq. 17-15 does not specify the locations of the basis functions. Our 
intuition suggests that they should be centered on the atoms of the molecule, but this is 
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certainly not a requirement. If this comment seems odd, it is worth emphasizing at this 
point that we should not let our chemical intuition limit our mathematical flexibility. As 
chemists, we choose to use atomic orbitals (AOs) because we anticipate that they will be 
efficient functions for the representation of MOs. However, as mathematicians, we 
should immediately stop thinking about our choices as orbitals, and instead consider them 
only to be functions, so that we avoid being conceptually influenced about how and 
where to use them. 
 
 Recall that the wave function squared has units of probability density. In essence, 
the electronic wave function is a road map of where the electrons are more or less likely 
to be found. Thus, we want our basis functions to provide us with the flexibility to allow 
electrons to “go” where their presence at higher density lowers the energy. For instance, 
to describe the bonding of a hydrogen atom to a carbon, it is clearly desirable to use a p 
function on hydrogen, oriented along the axis of the bond, to permit electron density to be 
localized in the bonding region more efficiently than is possible with only a spherically 
symmetric s function. Does this imply that the hydrogen atom is somehow sp-hybridized? 
Not necessarily—the p function is simply serving the purpose of increasing the flexibility 
with which the molecular orbital may be described. If we took away the hydrogen p 
function and instead placed an s function in between the C and H atoms, we could also 
build up electron density in the bonding region. 
 
 One should also note that the summation in equation 17-15 has an upper limit N; 
we can not work with an infinite basis in any convenient way (at least not when the basis 
is AOs). However, the more atomic orbitals we allow into our basis, the closer our basis 
will come to “spanning” the true molecular orbital space. Thus, the chemical idea that we 
would limit ourselves to, say, at most one 1s function on each hydrogen atom is 
needlessly confining from a mathematical standpoint. Indeed, there may be very many 
“true” one-electron MOs that are very high in energy. Accurately describing these MOs 
may require some unusual basis functions, e.g., very diffuse functions to describe weakly 
bound electrons, like those found in so-called Rydberg states. 
 
All that being said, let us now turn to evaluating the energy of our guess wave function. 
From eqs. 17-13 and 17-15 we have 
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where we have introduced the shorthand notation Hij and Sij for the integrals in the 
numerator and denominator, respectively. These so-called “matrix elements” are no 
longer as simple as they were in prior discussion, since the atomic orbital basis set, while 
likely to be efficient, is no longer likely to be orthonormal. These matrix elements have 
more common names:  Hij is called a “resonance integral”, and Sij is called an “overlap 
integral”. The latter has a very clear physical meaning, namely the extent to which any 
two basis functions overlap in a phase-matched fashion in space. The former integral is 
not so easily made intuitive, but it is worth pointing out that orbitals which give rise to 
large overlap integrals will similarly give rise to large resonance integrals. One resonance 
integral which is intuitive is Hii, which corresponds to the energy of a single electron 
occupying basis function i, i.e., it is essentially equivalent to the ionization potential of 
the AO in the environment of the surrounding molecule. 
 
 Now, it is useful to keep in mind our objective. The variational principle instructs 
us that as we get closer and closer to the “true” one-electron ground-state wave function, 
we will obtain lower and lower energies from our guess. Thus, once we have selected a 
basis set, we would like to choose the coefficients ai so as to minimize the energy for all 
possible linear combinations of our basis functions. From calculus, we know that a 
necessary condition for a function (i.e., the energy) to be at its minimum is that its 
derivatives with respect to all of its free variables (i.e., the coefficients ai) are zero. 
Notationally, that is 
 

 

!E

!ak
= 0 " k  (17-17)  

 
 (where we make use of the mathematical abbreviation ∀ meaning “for all”). Performing 
this fairly tedious partial differentiation on equation 17-16 for each of the N variables ak 
gives rise to N equations which must be satisfied in order for equation 17-17 to hold true, 
namely 
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ai

i=1

N

! Hki – ESki( ) = 0 " k . (17-18)  

 
 This set of N equations (running over k) involves N unknowns (the individual ai 
values). From linear algebra, we know that a set of N equations in N unknowns has a non-
trivial solution if and only if the determinant formed from the coefficients of the 
unknowns (in this case the “coefficients” are the various quantities Hki – ESki) is equal to 
zero. Notationally again, that is 
 

   

H11 – ES11 H12 – ES12 L H1N – ES1N

H21 – ES21 H22 – ES22 L H2N – ES2N

M M O M

HN1 – ESN1 HN2 – ESN2 L HNN – ESNN

= 0  (17-19)  

 
 Equation 17-19 is called a secular equation. In general, there will be N roots E 
which permit the secular equation to be true. That is, there will be N energies Ej (some of 
which may be equal to one another, in which case we say the roots are “degenerate”) 
where each value of Ej will give rise to a different set of coefficients, aij, which can be 
found by solving the set of linear equations 17-18 using that specific Ej, and these 
coefficients will define an optimal associated wave function φj within the given basis set, 
i.e.,  
 

 
! j = aij"i

i=1

N

# . (17-20)  

 
In a one-electron system, the lowest energy molecular orbital would thus define the 
“ground state” of the system, and the higher energy orbitals would be “excited states”. 
Obviously, as these are different MOs, they have different basis function coefficients. 
Although we have not formally proven it, it is worth noting that the variational principle 
holds for the excited states as well:  the calculated energy of a guess wave function for an 
excited state will be bounded from below by the true excited state energy. 
 
 So, in a nutshell, to find the optimal one-electron wave functions for a molecular 
system, we:  
 

(1) Select a set of N basis functions.  

(2) For that set of basis functions, determine all N2 values of both Hij and Sij.  

(3) Form the secular determinant, and determine the N roots Ej of the secular 

equation.  
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(4) For each of the N values of Ej, solve the set of linear eqs. 17-18 in order to 

determine the basis set coefficients aij for that MO. 
 
All of the MOs determined by this process are mutually orthogonal (because they are 
eigenfunctions of a Hermitian operator). For degenerate MOs, some minor complications 
arise, as always, but those are not discussed here. 
 
 
 
Homework 
 
To be solved in class:   
 
A quantum-mechanical system is known to have an approximate energy given by <H> = 
3a4 – 4a3 – 36a2 + 10 where a is a variational parameter. What is the highest energy that 
the actual system can possibly have in its ground state? (Don’t be fooled by the way the 
question is phrased—involving the “highest energy”—the question involves the ground 
state, and the variational principle tells us about bounds on the ground-state energy.) 
 
To be turned in for possible grading Mar. 10:   
 
None. Relax in the wake of the second exam. 
 
 


